Regulation and Role of Phosphatidate Phosphatase in Lipid Metabolism
磷脂酸磷酸酶在脂质代谢中的调节和作用
基本信息
- 批准号:9918539
- 负责人:
- 金额:$ 58.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:BiochemistryCell physiologyComplexCongenital dyserythropoietic anemiaCytosolDefectDiglyceridesDiseaseEndoplasmic ReticulumEnzymesEstrogen receptor positiveFatty LiverGene ExpressionGenesGenetic VariationGrowthHomeostasisHumanInflammationInsulin ResistanceLecithinLightLipidsLipodystrophyLocationMediatingMembraneMembrane ProteinsMetabolic DiseasesMolecular GeneticsMusMutationMyoglobinuriaNatureNon-Insulin-Dependent Diabetes MellitusNuclearObesityPeripheralPeripheral Nervous System DiseasesPhosphatidate PhosphatasePhosphatidylethanolaminePhospholipidsPhosphoric Monoester HydrolasesPhosphorylationPlayProcessProtein DephosphorylationProtein KinaseProtein phosphataseRegulationRhabdomyolysisRoleStructureTranscriptional RegulationTriglyceridesWorkYeast Model SystemYeastsbasechronic recurrent multifocal osteomyelitis derepressiongene synthesislipid biosynthesislipid metabolismlipineneonatal periodoverexpressionphosphatidatetrafficking
项目摘要
SUMMARY
Phosphatidate (PA) phosphatase (PAP) is an evolutionarily conserved enzyme that plays a key role in lipid
homeostasis by controlling the cellular levels of its substrate, PA, and its product, diacylglycerol. These lipids are
essential intermediates for the synthesis of triacylglycerol and membrane phospholipids; they also function in
phospholipid synthesis gene expression, lipid droplet formation, and vesicular trafficking. The importance of PAP
to lipid homeostasis and cell physiology is exemplified in yeast, mouse, and human by a host of cellular defects
and lipid-based diseases associated with loss or overexpression of enzyme function. In yeast, loss of Pah1 PAP
results in a massive expansion of the nuclear/ER membrane; this is ascribed to increases in PA content and
phospholipid synthesis that occur at the expense of triacylglycerol synthesis. The increase in phospholipid
synthesis is associated with the derepression of phospholipid synthesis gene expression, whereas the reduction
in the synthesis of triacylglycerol is associated with a decrease in lipid droplet formation. Lipin PAP deficiency
in mouse and human causes rhabdomyolysis, and deficiency in the mouse is also characterized by hepatic
steatosis during the neonatal period, lipodystrophy, insulin resistance and peripheral neuropathy. The
overexpression of lipin 1 PAP in mouse results in increased lipogenesis and obesity. Human lipin 2 PAP
deficiency causes chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anemia, whereas
genetic variations in the human LPIN2 PAP gene are associated with type 2 diabetes. PAP is a peripheral
membrane protein that must translocate from the cytosol to the nuclear/ER membrane in order to convert PA to
diacylglycerol. This conserved process is governed by phosphorylation/dephosphorylation of the enzyme. In
the cytosol, PAP is phosphorylated by multiple protein kinases that causes its retention in this cellular
compartment. The membrane association of PAP requires is dephosphorylation by a conserved protein
phosphatase complex (e.g., Nem1-Spo7 in yeast, CTDNEP1-NEP1-R1 in mouse and human). Besides its
location, the phosphorylation of PAP inhibits its activity but stabilizes it to proteasomal degradation;
dephosphorylation has the opposite effects. The work proposed in this MIRA application, which builds on our
prior work made possible by the advantages of the yeast model, will gain understanding into the structure-
function, mode of action and phosphorylation/dephosphorylation-mediated regulations of Pah1 PAP and the
Nem1-Spo7 protein phosphatase complex. We will pursue rigorous experimental approaches that combine
biochemistry and molecular genetics to shed light on how the proportional synthesis of triacylglycerol and
membrane phospholipids is controlled. Based on the conserved nature of the Nem1-Spo7/Pah1 phosphatase
cascade, the information gained from our studies with yeast is expected to be relevant in human.
总结
磷脂酸(PA)磷酸酶(PAP)是一种进化上保守的酶,在脂质代谢中起着关键作用。
通过控制其底物PA及其产物甘油二酯的细胞水平来维持体内平衡。这些脂质是
三酰甘油和膜磷脂合成的必要中间体;它们也在
磷脂合成基因表达、脂滴形成和囊泡运输。PAP的重要性
对脂质稳态和细胞生理学的影响,在酵母、小鼠和人类中,
和与酶功能丧失或过度表达相关的脂质疾病。在酵母中,失去Pah 1 PAP
导致核膜/内质网膜的大量扩张;这归因于PA含量的增加,
磷脂的合成是以三酰甘油合成为代价的。磷脂的增加
合成与磷脂合成基因表达的去抑制有关,而减少
在三酰甘油的合成中的减少与脂滴形成的减少有关。Lipin PAP缺乏症
在小鼠和人中引起横纹肌溶解,并且在小鼠中缺乏的特征还在于肝硬化。
新生儿期脂肪变性、脂肪营养不良、胰岛素抵抗和周围神经病变。的
Lipin 1 PAP在小鼠中的过表达导致脂肪生成增加和肥胖。人Lipin 2 PAP
缺乏引起慢性复发性多灶性骨髓炎和先天性红细胞生成不良性贫血,而
人LPIN 2 PAP基因的遗传变异与2型糖尿病有关。PAP是一种外周血管
膜蛋白,必须从胞质转移到核膜/ER膜,以将PA转化为
甘油二酯这个保守的过程由酶的磷酸化/去磷酸化控制。在
细胞溶质PAP被多种蛋白激酶磷酸化,导致其在细胞内滞留,
车厢PAP的膜结合需要一个保守的蛋白质去磷酸化
磷酸酶复合物(例如,酵母中的Nem 1-Spo 7,小鼠和人中的CTDNEP 1-NEP 1-R1)。除了其
磷酸化PAP抑制其活性,但使其稳定于蛋白酶体降解;
去磷酸化具有相反的作用。在这个MIRA应用程序中提出的工作,建立在我们的
通过酵母模型的优点,先前的工作成为可能,将获得对结构的理解-
Pah 1 PAP的功能、作用方式和磷酸化/去磷酸化介导的调节,
Nem 1-Spo 7蛋白磷酸酶复合物。我们将采用严格的实验方法,将联合收割机
生物化学和分子遗传学来阐明三酰甘油的比例合成,
膜磷脂被控制。基于Nem 1-Spo 7/Pah 1磷酸酶的保守性,
级联,我们从酵母研究中获得的信息预计与人类相关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GEORGE M. CARMAN其他文献
GEORGE M. CARMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GEORGE M. CARMAN', 18)}}的其他基金
Regulation and Role of Phosphatidate Phosphatase in Lipid Metabolism
磷脂酸磷酸酶在脂质代谢中的调节和作用
- 批准号:
10409651 - 财政年份:2020
- 资助金额:
$ 58.73万 - 项目类别:
Regulation and Role of Phosphatidate Phosphatase in Lipid Metabolism
磷脂酸磷酸酶在脂质代谢中的调节和作用
- 批准号:
10620311 - 财政年份:2020
- 资助金额:
$ 58.73万 - 项目类别:
相似海外基金
Establishing the role of cell size dysregulation in cancer cell physiology and cellular ageing
确定细胞大小失调在癌细胞生理学和细胞衰老中的作用
- 批准号:
MR/X020290/1 - 财政年份:2024
- 资助金额:
$ 58.73万 - 项目类别:
Fellowship
Maestro Pro multiwell microelectrode array for the University of Liverpool electrophysiology suite: Cell physiology meets high throughput.
适用于利物浦大学电生理学套件的 Maestro Pro 多孔微电极阵列:细胞生理学满足高通量要求。
- 批准号:
BB/X019357/1 - 财政年份:2023
- 资助金额:
$ 58.73万 - 项目类别:
Research Grant
Investigating changes to marine organism excitable cell physiology following anthropogenic disturbances.
研究人为干扰后海洋生物可兴奋细胞生理学的变化。
- 批准号:
557505-2021 - 财政年份:2022
- 资助金额:
$ 58.73万 - 项目类别:
Postdoctoral Fellowships
CAREER: Investigating the Cellular Electrome as a Biomarker in Red Blood Cell Physiology and Pathology
职业:研究细胞电组作为红细胞生理学和病理学中的生物标志物
- 批准号:
2145313 - 财政年份:2022
- 资助金额:
$ 58.73万 - 项目类别:
Continuing Grant
Understanding the role of intracellular cholesterol transport in cell physiology
了解细胞内胆固醇转运在细胞生理学中的作用
- 批准号:
22H02620 - 财政年份:2022
- 资助金额:
$ 58.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Scaling from single-cell physiology to community stability in a natural gut microbiome
合作研究:从单细胞生理学扩展到天然肠道微生物群落的稳定性
- 批准号:
2032985 - 财政年份:2021
- 资助金额:
$ 58.73万 - 项目类别:
Continuing Grant
Investigating changes to marine organism excitable cell physiology following anthropogenic disturbances.
研究人为干扰后海洋生物可兴奋细胞生理学的变化。
- 批准号:
557505-2021 - 财政年份:2021
- 资助金额:
$ 58.73万 - 项目类别:
Postdoctoral Fellowships
Visualizing Live Cell Physiology with High Resolution Using Phase-Contrast STEM
使用相差 STEM 以高分辨率可视化活细胞生理学
- 批准号:
10224280 - 财政年份:2020
- 资助金额:
$ 58.73万 - 项目类别: