Design of Fe2+ and H2O2 Induced Proximity Functionalized Imaging Probes for the Control of Cellular Functions
用于控制细胞功能的 Fe2 和 H2O2 诱导接近功能化成像探针的设计
基本信息
- 批准号:9918434
- 负责人:
- 金额:$ 28.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:Abscisic AcidAddressBiologicalBiological ProcessBiomedical ResearchBiotechnologyBrain-Derived Neurotrophic FactorBuffersCell DeathCell TherapyCell physiologyCellsChemicalsComplexCuesDetectionDiseaseEngineeringEnvironmentEventFluorescence MicroscopyFunctional ImagingFutureGenesGeneticGibberellinsHigh Pressure Liquid ChromatographyHydrogen PeroxideImmune responseKnowledgeLogicLuciferasesMediatingMediator of activation proteinMethodsMicroscopyMolecular BiologyMutationNatureNeurodegenerative DisordersNeuronsNoiseOxidative StressPathway interactionsProductionProteinsReportingResearchResearch ProposalsSeriesSignal PathwaySignal TransductionSignaling MoleculeSiteSpecificityStimulusTechnologyTestingTherapeuticToxic effectTranslationsbiological systemsdesigngene therapyimaging probeimprovedinnovationnew technologynovelplasmid DNAprogramsprotective effectsensorside effectspatiotemporalstability testingsynthetic biologytheranosticstherapeutic proteintool
项目摘要
Project Summary
Gene/cell therapies finally come of age thanks to the fundamental advances made by innovative and
improved biotechnologies. Nonetheless, many challenges particularly toxicity and undesired/uncontrolled
immune response remain. This research proposal addresses these concerns and represents a critical first step
toward developing novel, more effective cell/gene therapy. Toward this end, we propose a novel synthetic
biology technology termed “Environment Stimuli-Induced Proximity (ESIP)” to spatiotemporally manipulate
cellular functions. The new strategy can overcome the difficulty of the established chemically induced proximity
(CIP) method to mediate the translation of endogenous cellular signals into tailored cellular functions with
spatiotemporal precision. To demonstrate the feasibility, we propose to develop fluorescent and
chemiluminescent Fe(II) and H2O2 responsive ESIP chemical inducers because Fe(II) and H2O2 are important
signal molecules, which are associated with numerous biological functions and diseases, and gibberellin (GA)
and abscisic acid (ABA) are established chemical inducers with low toxicity. Specifically, we will design,
synthesize, test and optimize Fe2+ and H2O2-responsive fluorescent and chemiluminescent ESIP inducers
(Specific Aims 1-2) and test them in cells and construct ESIP-mediated “AND” Boolean logic gates to control the
conditional production of AD therapeutic proteins (Specific Aim 3). These studies will prove that these `smart'
theranostic probes possess the ability to sense endogenous Fe(II) and H2O2 specifically, and the ability to trigger
the release of original bioactive chemical inducers GA and ABA, which then induce downstream biological
functions such as luciferase expression and the production of neuron protective BDNF proteins. The technology
will ultimately be transformed into entirely new cell/gene therapies for disease treatment with significantly
reduced side effects. It is expected that this powerful and general strategy can be integrated with a variety of
existing synthetic biology molecular parts and tools to build new cellular genetic and signaling circuitries to
generate new functions as toolbox for biomedical research and as therapeutics for various disease treatment.
项目摘要
由于创新和
改进的生物技术。尽管如此,许多挑战尤其是毒性和不受控制的
免疫反应仍然存在。该研究建议解决了这些问题,并代表了关键的第一步
致力于开发新颖,更有效的细胞/基因疗法。为此,我们提出了一个新颖的合成
生物学技术被称为“环境刺激诱导的接近度(ESIP)”,可在空间上操纵
细胞功能。新策略可以克服已建立的精心诱导近端的困难
(CIP)介导内源性细胞信号转换为定制的细胞功能的方法
时空精度。为了证明可行性,我们建议开发荧光和
化学发光Fe(II)和H2O2响应式ESIP化学诱导剂,因为Fe(II)和H2O2很重要
信号分子,与许多生物学功能和疾病有关,以及gibberellin(GA)
和脱离酸(ABA)是建立的具有低毒性的化学诱导剂。具体来说,我们将设计
合成,测试和优化Fe2+和H2O2响应荧光和化学发光ESIP影响器
(特定目的1-2)并在细胞中测试它们,并构建ESIP介导的“和”布尔逻辑门以控制
AD治疗蛋白的有条件产生(特定目标3)。这些研究将证明这些“聪明”
疗法项目具有专门感知内源性Fe(II)和H2O2的能力,并且能够触发能力
原始生物活性化学诱导剂GA和ABA的释放,然后诱导下游生物学
诸如荧光素酶表达和神经元保护的BDNF蛋白的功能。技术
最终将转化为全新的细胞/基因疗法,用于疾病治疗
副作用减少。可以预期,这种强大而一般的策略可以与多种
现有的合成生物学分子零件和工具,以建立新的细胞遗传和信号圈
作为生物医学研究的工具箱产生新功能,并作为各种疾病治疗的治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WEI WANG其他文献
Pricing and hedging catastrophe equity put options under a Markov-modulated jump diffusion model
马尔可夫调制跳跃扩散模型下的巨灾股票看跌期权的定价和对冲
- DOI:
10.3934/jimo.2015.11.493 - 发表时间:
2014-09 - 期刊:
- 影响因子:1.3
- 作者:
WEI WANG;LINYI QIAN;XIAONAN SU - 通讯作者:
XIAONAN SU
WEI WANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WEI WANG', 18)}}的其他基金
Design of Fe2+ and H2O2 Induced Proximity Functionalized Imaging Probes for the Control of Cellular Functions
用于控制细胞功能的 Fe2 和 H2O2 诱导接近功能化成像探针的设计
- 批准号:
10388365 - 财政年份:2019
- 资助金额:
$ 28.78万 - 项目类别:
Organocatalytic Practical Synthesis of Deuterated Building Blocks and Biologically Important Structures
氘代结构单元和生物学重要结构的有机催化实际合成
- 批准号:
9892834 - 财政年份:2018
- 资助金额:
$ 28.78万 - 项目类别:
Organocatalytic Practical Synthesis of Deuterated Building Blocks and Biologically Important Structures
氘代结构单元和生物学重要结构的有机催化实际合成
- 批准号:
9918424 - 财政年份:2018
- 资助金额:
$ 28.78万 - 项目类别:
Organocatalytic Practical Synthesis of Deuterated Building Blocks and Biologically Important Structures
氘代结构单元和生物学重要结构的有机催化实际合成
- 批准号:
10115754 - 财政年份:2018
- 资助金额:
$ 28.78万 - 项目类别:
BINDING SPECIFICITY OF PEPTIDE RECOGNITION DOMAINS
肽识别域的结合特异性
- 批准号:
7367782 - 财政年份:2006
- 资助金额:
$ 28.78万 - 项目类别:
A SYSTEMATIC APPROACH TO RECONSTRUCTING TRANSCRIPTION NETWORKS IN THE CELL
重建细胞转录网络的系统方法
- 批准号:
7180239 - 财政年份:2005
- 资助金额:
$ 28.78万 - 项目类别:
Enhanced cardiac sympathetic afferent reflex in CHF
CHF 患者心脏交感神经传入反射增强
- 批准号:
6815913 - 财政年份:2004
- 资助金额:
$ 28.78万 - 项目类别:
A SYSTEMATIC APPROACH TO RECONSTRUCTING TRANSCRIPTION
重建转录的系统方法
- 批准号:
6976119 - 财政年份:2004
- 资助金额:
$ 28.78万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Diagnostics on demand: a biosensor platform for multiplexed small molecule detection
按需诊断:用于多重小分子检测的生物传感器平台
- 批准号:
10720755 - 财政年份:2023
- 资助金额:
$ 28.78万 - 项目类别:
Homologs of brassinosteroid signaling proteins in Toxoplasma gondii regulate parasite division
弓形虫中油菜素类固醇信号蛋白的同源物调节寄生虫分裂
- 批准号:
10312866 - 财政年份:2021
- 资助金额:
$ 28.78万 - 项目类别:
Homologs of brassinosteroid signaling proteins in Toxoplasma gondii regulate parasite division
弓形虫中油菜素类固醇信号蛋白的同源物调节寄生虫分裂
- 批准号:
10448293 - 财政年份:2021
- 资助金额:
$ 28.78万 - 项目类别:
Elucidating how drought stress reprograms genome activity
阐明干旱胁迫如何重新编程基因组活性
- 批准号:
10229336 - 财政年份:2020
- 资助金额:
$ 28.78万 - 项目类别:
Elucidating how drought stress reprograms genome activity
阐明干旱胁迫如何重新编程基因组活性
- 批准号:
10404087 - 财政年份:2020
- 资助金额:
$ 28.78万 - 项目类别: