Pressure in lung development and congenital diaphragmatic hernia
肺部发育压力与先天性膈疝
基本信息
- 批准号:9918958
- 负责人:
- 金额:$ 38.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AbdomenAddressAffectAnimal ModelAnimalsBiophysical ProcessBiophysicsCalmodulinChestCoculture TechniquesCongenital AbnormalityCongenital diaphragmatic herniaDataDevelopmentDevicesElectrophysiology (science)EngineeringEventExhibitsFailureFeedbackFetal LungFetal Mortality StatisticsFluids and SecretionsFutureGrantGrowthGuanine Nucleotide Exchange FactorsHumanHypoxemiaIn VitroIon ChannelKRAS2 geneLightLinkLiquid substanceLive BirthLungMechanicsMediatingMicrofluidicsModelingMolecularMorbidity - disease rateMorphogenesisMusMuscle ContractionMuscle functionMutationMyosin Light Chain KinaseNeonatalNewborn InfantOperative Surgical ProceduresOrganOrgan Culture TechniquesPathway interactionsPerinatal mortality demographicsPeristalsisPharmacologyPlasmidsPlayProteinsPumpRegulationReplacement TherapyRespiratory DiaphragmRespiratory InsufficiencyRiskRoleSeveritiesSignal PathwaySignal TransductionSmall Interfering RNAStimulusStretchingStructural Congenital AnomaliesStructural defectStructure of parenchyma of lungSurvival RateSystemTechniquesTestingThoracic cavity structureTracheaTransfectionTranslatingWorkairway epitheliumbaseclinical translationcostembryo surgeryfetalin vitro Modelkeratinocyte growth factorlung basal segmentlung developmentlung pressuremalformationmechanotransductionmedical specialtiesmortalitynew therapeutic targetnovelperinatal morbiditypressurepulmonary hypoplasiaras Proteinsrespiratory smooth muscleresponsestemsuccesstargeted treatmenttherapeutic targettreatment strategy
项目摘要
ABSTRACT
Congenital diaphragmatic hernia (CDH) is a devastating structural birth defect, resulting in significant
perinatal morbidity and mortality. In CDH, a failure of the diaphragm to completely close allows abdominal
organs to move into the thoracic cavity, compressing the developing lung and resulting in often lethal
pulmonary hypoplasia. As the high morbidity and mortality of CDH is linked to a structural defect (abdominal
organs compressing the lung) with no consistent genetic defect, identifying signaling pathways to target
therapeutically is difficult. To date, treatment strategies have focused on surgically occluding the trachea and
increasing fluid accumulation in the lung, which has been linked to accelerated lung growth in animal models.
However, these strategies have resulted in minimal improvement to neonatal survival rates, especially in light
of the risks of any prenatal surgery. A major challenge in successfully translating these findings from animal
models is a poor understanding of how mechanical signals, such as the elevated pressure caused by fluid
accumulation, are transduced into accelerated lung growth and branching. Several aspects of this
mechanotransduction system have identified. Airway smooth muscle (ASM) has been long known to exhibit
peristalsis in the lung, and this has been hypothesized to provide an essential dynamic stimulus to induce
branching and growth of the airway. In support of this, we have recently shown that airway pressure directly
regulates the timing of branching events, and that this depends on ASM function.
In this proposal, we focus on the molecular mechanotransduction pathways downstream of
lung pressure. Specifically, we hypothesize novel mechanotransduction pathways connecting pressure to
three distinct aspects of lung growth. First, we test the role of the mechanosensitive TRPV4 ion channel and
myosin light chain kinase in linking airway smooth muscle function. Secondly, we test the role of TRPV4 and K-
Ras in mediating the proliferation and branching of the airway epithelium. Third, we test a positive feedback
system, where pressure activated expression of FGF7 leads to increased fluid secretion and further
pressurization. To test these aims we utilize ex vivo culture of mouse lungs using our novel microfluidic culture
device, allowing us to directly control pressures within the developing lung. Further, we will employ
pharmacological inhibition and activation of our proposed pathways. To extend and validate our ex vivo
findings, we will additionally use siRNA and plasmid transfection with in vitro culture models.
By identifying molecular mechanisms that underlie pressure-based lung morphogenesis, this work will
provide a framework for future studies to explore mechanotransduction events central to both normal lung
development and the dysregulation that occurs in CDH. Further, this work will identify potential therapeutic
targets that can be exploited as adjuncts to or replacements for current surgical CDH treatments.
摘要
先天性横隔性疝气(CDH)是一种破坏性的结构性出生缺陷,导致显著
围产期发病率和死亡率。在CDH中,如果隔膜不能完全关闭,就会导致腹部
器官进入胸腔,压迫发育中的肺,导致通常是致命的
肺发育不全。由于CDH的高发病率和死亡率与结构缺陷(腹部)有关
压迫肺的器官),没有一致的遗传缺陷,识别靶向的信号通路
在治疗上是很困难的。到目前为止,治疗策略主要集中在外科手术闭塞气管和
增加肺部的液体积累,这与动物模型中肺的加速生长有关。
然而,这些策略对新生儿存活率的改善微乎其微,特别是在光照下。
任何产前手术的风险。成功地将这些发现转化为动物的一个主要挑战
模型对机械信号的理解很差,比如流体引起的压力升高
积聚,被转化为加速的肺生长和分支。这方面的几个方面
机械转导系统已经确定。气道平滑肌(ASM)很早就被认为是
肺的蠕动,这被假设为提供必要的动态刺激来诱导
呼吸道的分支和生长。为了支持这一点,我们最近已经表明,呼吸道压力直接
调节分支事件的时间,这取决于ASM功能。
在这项建议中,我们关注的是下游的分子力学转导途径。
肺部压力。具体地说,我们假设了新的机械转导通路将压力与
肺生长的三个截然不同的方面。首先,我们测试了机械敏感的TRPV4离子通道和
肌球蛋白轻链激酶在连接呼吸道平滑肌功能中的作用。其次,我们测试了TRPV4和K-的作用。
RAS在介导呼吸道上皮细胞增殖和分支中的作用。第三,我们测试了一个正反馈
系统,其中压力激活的Fgf7的表达导致液体分泌增加,并进一步
加压。为了测试这些目的,我们使用了我们的新型微流控培养的小鼠肺的体外培养。
设备,使我们能够直接控制发育中的肺内的压力。此外,我们将聘用
我们建议的通路的药理抑制和激活。为了延长和验证我们的体外实验
此外,我们还将在体外培养模型中使用siRNA和质粒转染法。
通过确定基于压力的肺形态发生的分子机制,这项工作将
为未来的研究提供了一个框架,以探索两个正常肺的中枢机械转导事件
发育和CDH中发生的失调。此外,这项工作将确定潜在的治疗方法
可作为当前外科CDH治疗的辅助或替代的靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Paul Gleghorn其他文献
Jason Paul Gleghorn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Paul Gleghorn', 18)}}的其他基金
Cell-Mediated Antiretroviral Drug Transport in the Lymph Node
细胞介导的抗逆转录病毒药物在淋巴结中的转运
- 批准号:
10469495 - 财政年份:2021
- 资助金额:
$ 38.34万 - 项目类别:
Cell-Mediated Antiretroviral Drug Transport in the Lymph Node
细胞介导的抗逆转录病毒药物在淋巴结中的转运
- 批准号:
10327086 - 财政年份:2021
- 资助金额:
$ 38.34万 - 项目类别:
Pressure in lung development and congenital diaphragmatic hernia
肺部发育压力与先天性膈疝
- 批准号:
9311116 - 财政年份:2017
- 资助金额:
$ 38.34万 - 项目类别:
Arsenic-mediated fibrosis and developmental dysregulation in the fetal lung
砷介导的胎儿肺纤维化和发育失调
- 批准号:
9453861 - 财政年份:2017
- 资助金额:
$ 38.34万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 38.34万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 38.34万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 38.34万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 38.34万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 38.34万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 38.34万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38.34万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38.34万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 38.34万 - 项目类别:
Research Grant