Two-Component System Design Principles
二元系统设计原则
基本信息
- 批准号:9922317
- 负责人:
- 金额:$ 43.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffinityAntibioticsBacteriaBehaviorBiological AssayCellsCommunicable DiseasesComplexCyclic AMP-Dependent Protein KinasesDataDiseaseElementsEnvironmentEnvironmental MonitoringEscherichia coliGoalsHealthHumanIn VitroIndividualInvestigationKineticsKnowledgeMass Spectrum AnalysisMeasurementMonitorMorbidity - disease rateOutcomeOutputPathway interactionsPhosphoric Monoester HydrolasesPhosphorylationPhysiologyPlayProteinsReactionRegulonReporter GenesResearchRoleSchemeSignal TransductionSignaling ProteinStructureSystemVariantbacterial communitybehavioral responsecombatcommensal microbesdesignenzyme activityextracellularfitnesshost-microbe interactionshuman microbiotamathematical modelmortalitypathogenpathogenic bacteriaprotein-histidine kinaseresponsesensorstoichiometrysystem architecture
项目摘要
Bacteria play important roles in human health. Bacterial communities are important components of normal
physiology, as revealed by studies of human microbiota. In contrast, pathogenic bacteria cause morbidity and
mortality. Whether impacting health or disease, interactions of bacteria with hosts share many common
features. To survive and thrive, bacteria must monitor their intracellular and extracellular environments and
elicit appropriate adaptive responses to changing conditions. "Two-component system” (TCS) phosphotransfer
pathways involving a sensor histidine protein kinase and a phosphorylation-activated response regulator that
generates the output response comprise a versatile regulatory scheme that occurs in hundreds of thousands of
regulatory systems. While structure and function of core elements are conserved, TCSs display enormous
diversity. Data acquired from numerous studies of individual systems as well as global analyses have revealed
differences in the magnitudes of enzyme activities, affinities of macromolecular interactions, levels of signaling
proteins and system architecture, all of which presumably contribute to tuning response behavior to the needs
of individual systems. The overarching goal of this research is to understand design principles of TCSs to the
extent that system behavior can be predicted, or at least rationalized, with knowledge of system parameters.
Protein concentrations are known to be critical parameters that influence reaction kinetics and outcomes in
vitro, yet they are commonly overlooked in cellular studies. Histidine kinase and response regulator
concentrations and stoichiometry are known to differ greatly among TCSs, but the effects of these variations
on system behavior, other than robustness, are largely unstudied. This project will fill this gap by exploring how
histidine kinase and response regulator concentrations impact system design and behavior. Investigations will
be performed using a set 19 Escherichia coli TCSs. Approaches will utilize reporter gene assays and
measurement of intracellular phosphorylation of response regulators to quantitate response output, mass
spectrometry to quantitate levels of two-component proteins in cells under un-induced and activated
conditions, mathematical modeling with experimental data to determine kinetics parameters and predict system
behavior, and competition assays in continuous cultures to assess fitness. Studies will address four broad
questions. Does the size of a TCS regulon place a requirement on the level of response regulator in a TCS?
How does the stoichiometry of histidine kinases and response regulators impact response output in an
activated TCS? How are system parameters configured to accommodate differences in histidine kinase and
response regulator concentrations? Does non-specific phosphorylation of response regulators place a
requirement on the phosphatase activity of histidine kinases? These investigations will identify core design
principles of TCSs and how variations in individual parameters are accommodated in different systems.
Principles uncovered in this study of TCSs are likely to be broadly applicable to other regulatory systems.
细菌在人类健康中起着重要作用。细菌群落是正常的
生理学,如对人类微生物群的研究所揭示的。相比之下,致病菌引起发病,
mortality.无论是影响健康还是疾病,细菌与宿主的相互作用都有许多共同点。
功能.为了生存和繁衍,细菌必须监测其细胞内和细胞外环境,
对不断变化的条件做出适当的适应性反应。“双组分系统”(TCS)磷酸转移
涉及传感器组氨酸蛋白激酶和磷酸化激活的反应调节剂的途径,
产生的输出响应包括一个通用的调节方案,发生在成千上万的
监管制度。虽然核心元件的结构和功能是保守的,但TCS显示出巨大的
多样性从对单个系统的大量研究以及全球分析中获得的数据显示,
酶活性的大小、大分子相互作用的亲和力、信号传导水平的差异
蛋白质和系统结构,所有这些都可能有助于调整响应行为以满足需求
个别系统。本研究的总体目标是了解TCS的设计原则,
系统行为可以预测的程度,或至少合理化,与系统参数的知识。
已知蛋白质浓度是影响反应动力学和结果的关键参数,
在体外,它们通常在细胞研究中被忽视。组氨酸激酶和反应调节剂
已知TCS之间的浓度和化学计量存在很大差异,但这些差异的影响
对系统行为的影响,除了鲁棒性之外,在很大程度上还没有研究。本项目将通过探索如何填补这一空白
组氨酸激酶和反应调节剂浓度影响系统设计和行为。调查将
使用19种大肠杆菌TCS进行。方法将利用报告基因测定,
测量细胞内反应调节剂的磷酸化以定量反应输出,质量
在未诱导和活化条件下定量细胞中双组分蛋白质水平的光谱法
条件下,用实验数据建立数学模型,确定动力学参数,预测体系
行为,和竞争测定在连续培养物中评估健身。研究将涉及四个广泛的
问题. TCS调节子的大小是否对TCS中的响应调节子的水平有要求?
组氨酸激酶和反应调节剂的化学计量如何影响反应输出,
激活TCS?如何配置系统参数以适应组氨酸激酶和
反应调节剂浓度?反应调节因子的非特异性磷酸化是否会使
对组氨酸激酶磷酸酶活性的要求?这些调查将确定核心设计
TCS的基本原理以及不同系统如何适应单个参数的变化。
本研究所揭示的原则可能广泛适用于其他监管制度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANN M. STOCK其他文献
ANN M. STOCK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANN M. STOCK', 18)}}的其他基金
CHARACTERIZATION OF NPC2, A CHOLESTEROL-BINDING PROTEIN DEFICIENT IN NIEMANN-PIC
NIEMANN-PIC 中缺乏的胆固醇结合蛋白 NPC2 的表征
- 批准号:
8170608 - 财政年份:2010
- 资助金额:
$ 43.73万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 43.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 43.73万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 43.73万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 43.73万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 43.73万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 43.73万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 43.73万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 43.73万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 43.73万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 43.73万 - 项目类别:
Continuing Grant