Two-Component System Design Principles
二元系统设计原则
基本信息
- 批准号:10615055
- 负责人:
- 金额:$ 43.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AffinityAntibioticsBacteriaBehaviorBiological AssayCellsCommunicable DiseasesComplexDataDiseaseElementsEnvironmentEnvironmental MonitoringEscherichia coliGoalsHealthHumanIn VitroIndividualInvestigationKineticsKnowledgeMass Spectrum AnalysisMeasurementMonitorMorbidity - disease rateOutcomeOutputPathway interactionsPhosphoric Monoester HydrolasesPhosphorylationPhysiologyPlayProteinsRationalizationReactionRegulonReporter GenesResearchRoleSchemeSignal TransductionSignaling ProteinStructureSystemVariantbacterial communitybehavioral responsecombatcommensal microbesdesignenzyme activityextracellularfitnesshost-microbe interactionshuman microbiotamathematical modelmortalitypathogenpathogenic bacteriaprotein-histidine kinaseresponsesensorstoichiometrysystem architecture
项目摘要
Bacteria play important roles in human health. Bacterial communities are important components of normal
physiology, as revealed by studies of human microbiota. In contrast, pathogenic bacteria cause morbidity and
mortality. Whether impacting health or disease, interactions of bacteria with hosts share many common
features. To survive and thrive, bacteria must monitor their intracellular and extracellular environments and
elicit appropriate adaptive responses to changing conditions. "Two-component system” (TCS) phosphotransfer
pathways involving a sensor histidine protein kinase and a phosphorylation-activated response regulator that
generates the output response comprise a versatile regulatory scheme that occurs in hundreds of thousands of
regulatory systems. While structure and function of core elements are conserved, TCSs display enormous
diversity. Data acquired from numerous studies of individual systems as well as global analyses have revealed
differences in the magnitudes of enzyme activities, affinities of macromolecular interactions, levels of signaling
proteins and system architecture, all of which presumably contribute to tuning response behavior to the needs
of individual systems. The overarching goal of this research is to understand design principles of TCSs to the
extent that system behavior can be predicted, or at least rationalized, with knowledge of system parameters.
Protein concentrations are known to be critical parameters that influence reaction kinetics and outcomes in
vitro, yet they are commonly overlooked in cellular studies. Histidine kinase and response regulator
concentrations and stoichiometry are known to differ greatly among TCSs, but the effects of these variations
on system behavior, other than robustness, are largely unstudied. This project will fill this gap by exploring how
histidine kinase and response regulator concentrations impact system design and behavior. Investigations will
be performed using a set 19 Escherichia coli TCSs. Approaches will utilize reporter gene assays and
measurement of intracellular phosphorylation of response regulators to quantitate response output, mass
spectrometry to quantitate levels of two-component proteins in cells under un-induced and activated
conditions, mathematical modeling with experimental data to determine kinetics parameters and predict system
behavior, and competition assays in continuous cultures to assess fitness. Studies will address four broad
questions. Does the size of a TCS regulon place a requirement on the level of response regulator in a TCS?
How does the stoichiometry of histidine kinases and response regulators impact response output in an
activated TCS? How are system parameters configured to accommodate differences in histidine kinase and
response regulator concentrations? Does non-specific phosphorylation of response regulators place a
requirement on the phosphatase activity of histidine kinases? These investigations will identify core design
principles of TCSs and how variations in individual parameters are accommodated in different systems.
Principles uncovered in this study of TCSs are likely to be broadly applicable to other regulatory systems.
细菌对人类健康起着重要作用。细菌群落是正常的重要组成部分
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ANN M. STOCK其他文献
ANN M. STOCK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ANN M. STOCK', 18)}}的其他基金
CHARACTERIZATION OF NPC2, A CHOLESTEROL-BINDING PROTEIN DEFICIENT IN NIEMANN-PIC
NIEMANN-PIC 中缺乏的胆固醇结合蛋白 NPC2 的表征
- 批准号:
8170608 - 财政年份:2010
- 资助金额:
$ 43.18万 - 项目类别:
相似海外基金
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 43.18万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 43.18万 - 项目类别:
Research Grant
Hitting bacteria with a Bam: Lectin-Like Antimicrobials as New Antibiotics
用 Bam 击中细菌:凝集素类抗菌剂作为新型抗生素
- 批准号:
DP230102150 - 财政年份:2023
- 资助金额:
$ 43.18万 - 项目类别:
Discovery Projects
Systematic identification of synthetic interactions in bacteria towards the next-generation of antibiotics
系统鉴定细菌与下一代抗生素的合成相互作用
- 批准号:
468567 - 财政年份:2022
- 资助金额:
$ 43.18万 - 项目类别:
Operating Grants
“L-form” bacteria: basic science, antibiotics, evolution and biotechnology
L 型细菌:基础科学、抗生素、进化和生物技术
- 批准号:
FL210100071 - 财政年份:2022
- 资助金额:
$ 43.18万 - 项目类别:
Australian Laureate Fellowships
Repurposing Gram-positive Antibiotics for Gram-Negative Bacteria using Antibiotic Adjuvants
使用抗生素佐剂重新利用革兰氏阳性抗生素治疗革兰氏阴性菌
- 批准号:
10708102 - 财政年份:2022
- 资助金额:
$ 43.18万 - 项目类别:
Repurposing Gram-positive Antibiotics for Gram-Negative Bacteria using Antibiotic Adjuvants
使用抗生素佐剂重新利用革兰氏阳性抗生素治疗革兰氏阴性菌
- 批准号:
10587015 - 财政年份:2022
- 资助金额:
$ 43.18万 - 项目类别:
Isolation, identification and characterization of potentially novel antibiotics from rhizospheric bacteria without detectable in vitro resistance
从根际细菌中分离、鉴定和表征潜在的新型抗生素,且体外未检测到耐药性
- 批准号:
10581945 - 财政年份:2021
- 资助金额:
$ 43.18万 - 项目类别:
Developing novel antibiotics from natural products against resistant bacteria
从天然产物中开发针对耐药细菌的新型抗生素
- 批准号:
2599490 - 财政年份:2021
- 资助金额:
$ 43.18万 - 项目类别:
Studentship
Isolation, identification and characterization of potentially novel antibiotics from rhizospheric bacteria without detectable in vitro resistance
从根际细菌中分离、鉴定和表征潜在的新型抗生素,且体外未检测到耐药性
- 批准号:
10358855 - 财政年份:2021
- 资助金额:
$ 43.18万 - 项目类别: