Spatially resolved single-cell patterns of drug-resistant ovarian cancers

耐药卵巢癌的空间分辨单细胞模式

基本信息

项目摘要

Project Summary Ovarian cancers remain one of the deadliest cancers affecting women. Tumors commonly acquire resistance to first-line chemotherapeutics, and only 30% of patients survive beyond 5 years. Novel targeted combination therapies are needed to improve long-term survival outcomes and will depend on an improved understanding of the molecular and genetic mechanisms of drug resistance. Previous work has used next-generation bulk sequencing approaches to globally profile genetic signatures of drug resistance in ovarian cancer tissue. However, rare cells in a highly heterogeneous 3D tissue context may hold the key to understanding these complex processes, and such rare cells are notoriously difficult to identify using these standard methods. We will use an in vivo patient derived xenograft (PDX) model of high grade serous ovarian cancer (HSGSOC) representing multiple different genetic backgrounds. HGSOC PDXs will be allowed to acquire resistance to PARP inhibitor talazoparib. Transcriptional signatures of PARP inhibitor resistance will be assessed using single cell RNA sequencing of single cells isolated from tumor tissue fully resistant to inhibitor as well as from tissue collected at intermediate time points. scRNA seq data will be mined to gain transcriptional signatures of (1) component cell populations and (2) candidate genes driving the resistant phenotype. We will use multiplex single molecule FISH and light sheet microscopy to image target (n ~ 100) mRNA species in thick tissue blocks. We will analyze 3D image datasets to identify resistant cancer cells and chart their 3D position in relation to supporting cell types that express relevant cell signaling ligands and/or receptors and additional tumor features (e.g. stroma, blood vessels). Lastly, we will choose target genes that will be functionally validated in relevant cell culture and additional PDX in vivo models. By examining single cell transcriptional profiles, we will greatly advance our understanding of how the 3D tumor tissue microenvironment allows and encourages rare cells with pre-resistant transcriptional programs to escape PARP inhibitor treatment. Along with an improved understanding of the dynamics of drug resistance, the proposed research has the potential to suggest novel combination treatments that could be exploited in the future to more effectively eliminate HGSOC and prevent recurrence of drug resistant tumors.
项目摘要 卵巢癌仍然是影响女性的最致命的癌症之一。肿瘤通常会获得 对一线化疗药物耐药,只有30%的患者存活超过5年。小说 需要有针对性的联合治疗来改善长期生存结果,并将取决于 提高了对耐药的分子和遗传机制的理解。上一首 工作已经使用下一代批量测序方法在全球范围内描绘出 卵巢癌组织中的耐药性。然而,高度异质的3D组织中的稀有细胞 背景可能是理解这些复杂过程的关键,而这种罕见的细胞是 使用这些标准方法识别是出了名的困难。我们将使用体内患者派生的 高度恶性浆液性卵巢癌异种移植模型的建立 遗传背景。HGSOC PDX将被允许对PARP抑制剂他唑帕利产生耐药性。 将使用单细胞RNA评估PARP抑制剂耐药性的转录特征 从完全耐药的肿瘤组织和组织中分离的单细胞的测序 在中间时间点收集。将挖掘scRNA序列数据以获得转录签名 (1)组成细胞群体和(2)驱动抗性表型的候选基因。我们将使用 多重单分子FISH和光片显微镜成像靶(N~100)mRNAs 厚厚的组织块。我们将分析3D图像数据集以识别耐药癌细胞并绘制其 与表达相关细胞信号配体和/或的支持细胞类型相关的3D位置 受体和其他肿瘤特征(如间质、血管)。最后,我们将选择目标基因 这将在相关的细胞培养和体内其他PDX模型中进行功能验证。通过 研究单细胞转录图谱,我们将极大地促进我们对3D 肿瘤组织微环境允许和鼓励具有预耐药转录的稀有细胞 逃避PARP抑制剂治疗的程序。随着对动力学的更好的理解 在耐药性方面,拟议的研究有可能提出新的联合治疗方法 将来可以利用这一点来更有效地消除HGSOC并防止再次发生 耐药肿瘤。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Robert King其他文献

Benjamin Robert King的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Robert King', 18)}}的其他基金

Spatially resolved single-cell patterns of drug-resistant ovarian cancers
耐药卵巢癌的空间分辨单细胞模式
  • 批准号:
    9760974
  • 财政年份:
    2019
  • 资助金额:
    $ 6.53万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 6.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了