Super resolution label-free imaging in highly scattering bone
高散射骨中的超分辨率无标记成像
基本信息
- 批准号:9921367
- 负责人:
- 金额:$ 17.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalBiological AssayBiological MonitoringBone DiseasesBone TissueCaliberCartilageCell Differentiation processCell TherapyCellsChildhoodClinicalCollagenCrystallizationDefectDepositionDevelopmentDevicesDiseaseFiberFlow CytometryGenerationsGrowthHealthHumanHydroxyapatitesHypophosphatasiaImageImmunosuppressionIn VitroIndustryKineticsKnowledgeLabelLasersMammalsMeasuresMembraneMembrane LipidsMesenchymal Stem Cell TransplantationMesenchymal Stem CellsMetabolic Bone DiseasesMicroscopyMineralsModalityMonitorMultivesicular BodyMusOsteoblastsOsteogenesisOsteogenesis ImperfectaOsteoporosisOutcomePathway interactionsProcessProductionPropertyProtocols documentationRefractive IndicesResearchResolutionRoleScanningScientific Advances and AccomplishmentsSourceStem cell transplantSurfaceTechnologyTherapeuticTimeTissuesVesicleWorkbasebioprocessbonecell behaviordigitalimage reconstructionimaging modalityimprovedin vivomesenchymal stromal cellmultiphoton microscopynanometernanoscalenovel imaging technologyoptical imagingosteogenicparacrinesecond harmonicstem cell differentiationthree-dimensional visualizationtransplant modelvesicular release
项目摘要
PROJECT SUMMARY
Mesenchymal stem cells (otherwise known as mesenchymal stromal cells or MSCs) hold great promise for
treatment of bone related disorders due to their paracrine, multi-potential and immunosuppressive effects. One
major objective is to leverage the osteogenic differentiation of MSCs as potential treatments in metabolic bone
disorders (e.g. osteoporosis, osteogenesis imperfecta, or hypophosphatasia) or localized bone defects.
However, knowledge of the MSC differentiation control pathways and how to leverage these during
bioprocessing is lacking and has impeded more widespread clinical translation1-3. Unfortunately, the current
clinical and industry state-of-the-art for characterization of MSC potency is to simply measure a few surface
markers using flow cytometry and to study the ability of cells to differentiate in vitro into the target tissues (e.g.
bone/cartilage). These assays are challenging to quantify, slow to perform, and have low direct relevance to in
vivo functioning4. Our proposal aims to leverage development of novel imaging technologies to identify
in vivo processes of key significance to transplanted stem cell differentiation and healthy bone tissue
production, and will interrogate and leverage membrane lipid pathways to maintain and enhance the
differentiation potential of MSCs.
Our planned research is motivated by growing appreciation of how lipid membrane processing
regulates cellular properties of central regulatory importance in bone formation, where maturing osteoblasts
produce and secrete mineralizing matrix vesicles in multivesicular bodies of ~500 nanometer diameter that
nucleate the deposition and growth of hydroxyapatite mineral crystals in bone collagen5,6. Little is known about
processes that drive the formation and secretion of these vesicles, which is a pathway of central importance in
the formation of mature cartilage and bone. This formation process is challenging to label, but with a high
refractive index change it is ideal for refractive index sensitive modalities like third harmonic generation
imaging. In this work, we hypothesize that 3-dimensional time-resolved super resolution membrane
imaging will provide a direct readout of vesicle formation profiles that will predict cell differentiation
and potency. In these studies, we will develop ultra-resolution multiphoton microscopy to monitor MSC
collagen production and mineralizing vesicle release during osteogenic differentiation. We will then apply this
technology in vivo using adaptive scattering wavefront correction for intravital super-resolution third harmonic
generation microscopy to monitor MSC matrix vesicle formation and produce high potency osteogenic cells.
This will significantly advance scientific understanding from a technological perspective by enabling the label-
free super-resolution 3-dimensional visualization of nanometer-sized features through completely opaque
highly scattering bone tissue. We have the potential to transform treatment of bone diseases, with results that
would be broadly applicable to a range of human health concerns.
项目摘要
间充质干细胞(也称为间充质基质细胞或MSC)具有很大的前景,
由于其旁分泌、多潜能和免疫抑制作用,可用于治疗骨相关疾病。一
主要目的是利用MSC的成骨分化作为代谢性骨的潜在治疗方法
疾病(如骨质疏松症、骨生成障碍或磷酸酶过少症)或局部骨缺损。
然而,MSC分化控制途径的知识以及如何在分化过程中利用这些途径,
缺乏生物处理,并且阻碍了更广泛的临床预防1 -3。可惜现在的
用于表征MSC效力的临床和工业现有技术是简单地测量一些表面
使用流式细胞术标记并研究细胞在体外分化为靶组织(例如,
骨/软骨)。这些测定具有定量挑战性,执行缓慢,并且与免疫原性的直接相关性低。
体内功能4.我们的提案旨在利用新型成像技术的发展来识别
对移植干细胞分化和健康骨组织具有关键意义的体内过程
生产,并将询问和利用膜脂途径,以维持和提高
MSC的分化潜能。
我们计划的研究的动机是越来越多的赞赏如何脂膜加工
调节在骨形成中具有中心调节重要性的细胞特性,
在直径约500纳米的多泡体中产生并分泌矿化基质囊泡,
使骨胶原中羟基磷灰石矿物晶体的沉积和生长成核5,6.知之甚少
驱动这些囊泡的形成和分泌的过程,这是一个至关重要的途径,
成熟软骨和骨骼的形成。这个形成过程很难标记,但具有很高的
折射率变化,它是理想的折射率敏感的形式,如三次谐波产生
显像在这项工作中,我们假设三维时间分辨超分辨膜
成像将提供囊泡形成概况的直接读数,
和力量在这些研究中,我们将发展超分辨率多光子显微镜来监测MSC
成骨分化过程中胶原蛋白的产生和矿化囊泡的释放。然后我们将应用这个
活体超分辨三次谐波自适应散射波前校正技术
代显微镜监测MSC基质囊泡的形成并产生高效成骨细胞。
这将从技术的角度大大推进科学的理解,使标签-
通过完全不透明的方式实现纳米尺寸特征的免费超分辨率三维可视化
高度分散的骨组织我们有可能改变骨骼疾病的治疗,结果是,
将广泛适用于一系列人类健康问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luke J. Mortensen其他文献
Multi-photon fluorescence microscopy with adaptive optics
具有自适应光学器件的多光子荧光显微镜
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Tianyi Zheng;A.R. Liversage;K. Tehrani;J. Call;Peter A. Kner;Luke J. Mortensen - 通讯作者:
Luke J. Mortensen
Bitter taste receptor T2R7 and umami taste receptor subunit T1R1 are expressed in the taste bud cells of chickens.
苦味受体T2R7和鲜味受体亚基T1R1在鸡的味蕾细胞中表达。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
吉田悠太;Zhonghou Wang;Kayvan F. Tehrani;Emily G. Pendleton;田中崚太;Luke J. Mortensen;西村正太郎;田畑正志;Hong-Xiang Liu;川端二功. - 通讯作者:
川端二功.
Bitter Taste Receptor T2R7 and Umami Taste Receptor Subunit T1R1 Are Expressed Largely in Vimentin-Negative Taste Bud Cells in Chickens
苦味受体 T2R7 和鲜味受体亚基 T1R1 在鸡波形蛋白阴性味蕾细胞中大量表达
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yuta Yoshida;Zhonghou Wang;Kayvan F. Tehrani;Emily G. Pendleton;Ryota Tanaka;Luke J. Mortensen;Shotaro Nishimura;Shoji Tabata;Hong-Xiang Liu;Fuminori Kawabata - 通讯作者:
Fuminori Kawabata
Luke J. Mortensen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Establishment of a new biological assay using Hydra nematocyst deployment
利用水螅刺丝囊部署建立新的生物测定方法
- 批准号:
520728-2017 - 财政年份:2017
- 资助金额:
$ 17.75万 - 项目类别:
University Undergraduate Student Research Awards
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10368760 - 财政年份:2017
- 资助金额:
$ 17.75万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
10669539 - 财政年份:2017
- 资助金额:
$ 17.75万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9570142 - 财政年份:2017
- 资助金额:
$ 17.75万 - 项目类别:
POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER) AFTER RADIOLOGICAL AND NUCLEAR EVENTS.
用于确定放射和核事件后组织特异性吸收电离辐射剂量(生物剂量计)的护理点生物测定。
- 批准号:
9915803 - 财政年份:2017
- 资助金额:
$ 17.75万 - 项目类别:
COVID-19 Supplemental work: POINT-OF-CARE BIOLOGICAL ASSAY FOR DETERMINING TISSUE-SPECIFIC ABSORBED IONIZING RADIATION DOSE (BIODOSIMETER).
COVID-19 补充工作:用于确定组织特异性吸收电离辐射剂量的护理点生物测定(生物剂量计)。
- 批准号:
10259999 - 财政年份:2017
- 资助金额:
$ 17.75万 - 项目类别:
Drug discovery based on a new biological assay system using Yeast knock-out strain collection
基于使用酵母敲除菌株收集的新生物测定系统的药物发现
- 批准号:
21580130 - 财政年份:2009
- 资助金额:
$ 17.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2005
- 资助金额:
$ 17.75万 - 项目类别:
Postdoctoral Fellowships
Machine learning for automatic gene annotation using high-throughput biological assay data
使用高通量生物测定数据进行自动基因注释的机器学习
- 批准号:
300985-2004 - 财政年份:2004
- 资助金额:
$ 17.75万 - 项目类别:
Postdoctoral Fellowships