Biocatalytic approaches to antiepileptic drug targets
抗癫痫药物靶标的生物催化方法
基本信息
- 批准号:9922670
- 负责人:
- 金额:$ 1.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAffinityAnabolismAntiepileptic AgentsArchitectureArrhythmiaBindingBiochemicalBiological AssayBrainBreathingCardiacChemicalsChemistryChildhoodClimactericComplexCyanobacteriumDevelopmentDiseaseDoseDrug DesignDrug TargetingElectrophysiology (science)EnzymesEpilepsyFamilyGene ClusterGenerationsGenesGuanidinesHumanHuman bodyHydroxylationIndividualLeadLigandsMediatingMethodsMolecularMusMutateMutationMyotoniaNatural ProductsNatureNeuraxisNeuronsParalysedPathway interactionsPatientsPatternPositioning AttributeProtein IsoformsRattusReactionReportingResearchRouteSamplingSaxitoxinShellfishSignal TransductionSkeletal MuscleSodium ChannelSodium Channel BindingSodium Channel BlockersSourceSpecificitySulfateTechniquesToxinVariantWorkanalogbasechemical reactiondesigndravet syndromedrug marketenzyme substrateepileptic encephalopathiesfunctional groupgonyautoxinshydroxyl groupnoveloxidationresponsescaffoldside effectskeletalsmall moleculestudent mentoringsulfotransferasevoltage
项目摘要
Proposal Summary
Discovering small molecule ligands with a high affinity for voltage-gated sodium channels and specificity for
disease relevant isoforms is challenging. Common synthetic strategies require prefunctionalization to introduce
heteroatoms and larger functional groups, rendering the molecules difficult to handle, purify, and subject to
further diversification. Nature approaches such synthetic bottlenecks by constructing simple cores and
decorating scaffolds later on in biosynthesis. Chemists take inspiration from Nature’s techniques in designing
late-stage C–H functionalization routes, but the ability of enzymes to generate molecular complexity is
unmatched by state-of-the-art synthetic methods. Thus, biocatalysis represents a unique approach to tackling
the synthetic challenges associated with drug design.
Paralytic shellfish toxins (PSTs) are an untapped source of antiepileptic drug targets. Over 50 naturally derived
PSTs have been identified, and the select few that have been assessed for binding to voltage-gated sodium
channels (VGSCs) have demonstrated the ability to block VGSCs. This molecular response corresponds to
physical responses desired in antiepileptic drug targets. The study of PSTs as antiepileptic drug targets has
been hindered by challenging synthetic routes and the inability to isolate sufficient quantities of most of the >50
analogs. Gene clusters associated with paralytic shellfish toxin biosynthesis have been identified, enabling
opportunities to leverage enzymes capable of chemistry inaccessible to even the most skilled chemist. This
proposal describes strategies to elucidate the paralytic shellfish toxin biosynthetic pathway, evaluate enzyme
substrate scopes, and isolate novel compounds from biocatalytic reactions for analysis with VGSCs using
electrophysiological techniques.
In summary, this work aims to diversify the PST scaffold using PST biosynthetic enzymes from cyanobacteria,
enabling chemical transformations on complex, heteroatom-rich molecules that are otherwise intractable. The
methods established in this proposal will accelerate the discovery of new antiepileptic drugs by developing new
chemical reactions using biocatalysts from the biosynthetic pathway of known VGSC blocking compounds.
提案摘要
发现对电压门控钠通道具有高亲和力和特异性的小分子配体
疾病相关亚型具有挑战性。常见的合成策略需要预功能化来引入
杂原子和较大的官能团,使得分子难以处理、纯化和经受
进一步多元化。大自然通过构建简单的核心来解决此类合成瓶颈
随后在生物合成中装饰支架。化学家从大自然的设计技术中汲取灵感
后期 C-H 功能化路线,但酶产生分子复杂性的能力是
最先进的合成方法无法比拟。因此,生物催化代表了解决这一问题的独特方法。
与药物设计相关的综合挑战。
麻痹性贝类毒素(PST)是抗癫痫药物靶标的尚未开发的来源。超过 50 种自然衍生的
PST 已被鉴定,并且选定的少数几个已被评估与电压门控钠的结合
通道(VGSC)已证明具有阻止 VGSC 的能力。该分子反应对应于
抗癫痫药物靶标所需的物理反应。 PST 作为抗癫痫药物靶点的研究
由于具有挑战性的合成路线以及无法分离足够数量的大多数> 50
类似物。与麻痹性贝类毒素生物合成相关的基因簇已被鉴定,使得
即使是最熟练的化学家也无法利用具有化学能力的酶的机会。这
提案描述了阐明麻痹性贝类毒素生物合成途径、评估酶的策略
底物范围,并从生物催化反应中分离出新化合物,以便使用 VGSC 进行分析
电生理学技术。
总之,这项工作旨在利用蓝藻中的 PST 生物合成酶使 PST 支架多样化,
能够对复杂的、富含杂原子的分子进行化学转化,否则这些分子很难处理。这
该提案中建立的方法将通过开发新的抗癫痫药物来加速新的抗癫痫药物的发现
使用来自已知 VGSC 阻断化合物生物合成途径的生物催化剂进行化学反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
April Lukowski其他文献
April Lukowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('April Lukowski', 18)}}的其他基金
Interrogating novel biosynthetic sources for the production of polybrominated diphenyl ethers
探究生产多溴二苯醚的新型生物合成来源
- 批准号:
10471212 - 财政年份:2021
- 资助金额:
$ 1.2万 - 项目类别:
Interrogating novel biosynthetic sources for the production of polybrominated diphenyl ethers
探究生产多溴二苯醚的新型生物合成来源
- 批准号:
10673973 - 财政年份:2021
- 资助金额:
$ 1.2万 - 项目类别:
Interrogating novel biosynthetic sources for the production of polybrominated diphenyl ethers
探究生产多溴二苯醚的新型生物合成来源
- 批准号:
10313961 - 财政年份:2021
- 资助金额:
$ 1.2万 - 项目类别:
Biocatalytic approaches to antiepileptic drug targets
抗癫痫药物靶标的生物催化方法
- 批准号:
9761129 - 财政年份:2019
- 资助金额:
$ 1.2万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 1.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 1.2万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 1.2万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 1.2万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 1.2万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 1.2万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 1.2万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 1.2万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 1.2万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 1.2万 - 项目类别:
Continuing Grant














{{item.name}}会员




