Development of a computational biomechanics model of the glomerulus to assess risk of mechanical stress-induced glomerular injury in conditions of reduced afferent arteriole vasoconstrictive response.

开发肾小球计算生物力学模型,以评估在传入小动脉血管收缩反应减少的情况下机械应力引起的肾小球损伤的风险。

基本信息

  • 批准号:
    9924241
  • 负责人:
  • 金额:
    $ 2.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-10 至 2021-06-29
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract A reduction in the vasoconstrictive responsiveness of the afferent arteriole relative to perfusion pressure is implicated in the progression of glomerular injury in diabetes, some forms of hypertension and chronic kidney diseases involving the loss of functional nephrons. A reduction of the vasoconstrictive responsiveness of the afferent arteriole raises afferent blood flow and intraglomerular pressure which is believed to increase mechanical stress (cyclic stretch and fluid flow shear stress) on the glomerular cells. In response to cyclic stretch, mesangial cells increase deposition of extracellular matrix (ECM) components and podocytes may detach from the glomerular capillary. In response to increased shear stress, vascular endothelial cells increase production of inflammatory markers. These results collectively indicate that a reduced vasoconstrictive responsiveness of the afferent arteriole relative to perfusion pressure causes injury of glomerular cells by increasing shear stress on and cyclic stretch of the glomerular capillary walls. Although mechanical stress- induced glomerular injury is a generally accepted concept in kidney disease research, the actual magnitudes of mechanical stress, in particular shear stress and hoop stress resulting from an attenuated afferent arteriole vasoconstrictive response, are unknown. The overall aim of this proposal is to use multiscale mathematical modeling to estimate the magnitudes of shear stress and capillary wall stretch in the glomerular capillary network as a result of decreased afferent arteriole vasoconstrictive responsiveness. We will develop a “glomerular network model” that calculates flows through the capillaries of an actual, anatomically-accurate glomerular microvascular network. A feedback model of afferent arteriole resistance will be integrated with the glomerular network model to represent the complex dynamics of renal autoregulation in our model. Additionally, we will develop a computational fluid dynamics (CFD) model of a single glomerular capillary, taking into account the dynamics arising from elastic red blood cell structures flowing in a permeable channel. Taking a multiscale mathematical modeling approach, for each capillary segment of the glomerular network model, output of the glomerular network model will be mapped to parameters in the CFD capillary model to calculate shear stresses on the vessel walls. The mechanical stresses calculated using this approach will be compared to experimental parameters of previous cell studies to determine the risk of glomerular cell injury with and without the pathological hemodynamic conditions arising from reduction in afferent arteriole vasoconstrictive responsiveness. This work will serve as a basis for a glomerular injury risk index in pathological renal hemodynamic conditions and will inform the design of “glomerulus-on-a-chip” microphysiological systems. Mechanical forces are known to crucially affect the efficacy of these systems as models of disease and as drug testing platforms; thus, the proposed project will contribute to development and establishment of these systems for these contexts of use.
项目总结/文摘

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulations of Glomerular Shear and Hoop Stresses in Diabetes, Hypertension, and Reduced Renal Mass using a Network Model of a Rat Glomerulus.
  • DOI:
    10.14814/phy2.14577
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Richfield O;Cortez R;Navar LG
  • 通讯作者:
    Navar LG
Simulations of increased glomerular capillary wall strain in the 5/6-nephrectomized rat.
5/6-否切除大鼠中肾小球毛细血管壁应变增加的模拟。
  • DOI:
    10.1111/micc.12721
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Richfield, Owen;Cortez, Ricardo;Navar, L. Gabriel
  • 通讯作者:
    Navar, L. Gabriel
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Owen Richfield其他文献

Owen Richfield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Owen Richfield', 18)}}的其他基金

Development of a computational biomechanics model of the glomerulus to assess risk of mechanical stress-induced glomerular injury in conditions of reduced afferent arteriole vasoconstrictive response.
开发肾小球计算生物力学模型,以评估在传入小动脉血管收缩反应减少的情况下机械应力引起的肾小球损伤的风险。
  • 批准号:
    9761194
  • 财政年份:
    2019
  • 资助金额:
    $ 2.95万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 2.95万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了