Development of a computational biomechanics model of the glomerulus to assess risk of mechanical stress-induced glomerular injury in conditions of reduced afferent arteriole vasoconstrictive response.
开发肾小球计算生物力学模型,以评估在传入小动脉血管收缩反应减少的情况下机械应力引起的肾小球损伤的风险。
基本信息
- 批准号:9924241
- 负责人:
- 金额:$ 2.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-10 至 2021-06-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnatomyAttenuatedBloodBlood capillariesBlood flowCapillary Endothelial CellCellsCellular StructuresChronic Kidney FailureComplexComputer SimulationDepositionDevelopmentDiabetes MellitusDimensionsDiseaseDisease modelErythrocytesExtracellular MatrixFeedbackFiltrationGlomerular CapillaryGraphHomeostasisHumanHypertensionIn VitroIndividualInflammatoryInjuryInjury to KidneyKidneyKidney DiseasesLiquid substanceMapsMathematicsMeasurementMechanical StressMechanicsMetabolismModelingNephronsOutputPathologicPerfusionPeriodicityPermeabilityPhysiologicalProductionPropertyProtocols documentationRattusRenal Blood FlowReportingResearchResistanceRiskStressStretchingSystemSystemic blood pressureTestingTranslatingTubeVascular Endothelial CellWorkarterioleattenuationbiomechanical modelcell injurydesigndrug testingexperiencefluid flowfunctional lossglomerular capillary endotheliumhemodynamicsin vivoindexinginflammatory markerkidney cellmathematical analysismathematical modelmechanical forcemesangial cellmicrophysiology systemnetwork modelspodocytepredictive modelingpressureresponseshear stresssolutevasoconstriction
项目摘要
Project Summary/Abstract
A reduction in the vasoconstrictive responsiveness of the afferent arteriole relative to perfusion pressure is
implicated in the progression of glomerular injury in diabetes, some forms of hypertension and chronic kidney
diseases involving the loss of functional nephrons. A reduction of the vasoconstrictive responsiveness of the
afferent arteriole raises afferent blood flow and intraglomerular pressure which is believed to increase
mechanical stress (cyclic stretch and fluid flow shear stress) on the glomerular cells. In response to cyclic
stretch, mesangial cells increase deposition of extracellular matrix (ECM) components and podocytes may
detach from the glomerular capillary. In response to increased shear stress, vascular endothelial cells increase
production of inflammatory markers. These results collectively indicate that a reduced vasoconstrictive
responsiveness of the afferent arteriole relative to perfusion pressure causes injury of glomerular cells by
increasing shear stress on and cyclic stretch of the glomerular capillary walls. Although mechanical stress-
induced glomerular injury is a generally accepted concept in kidney disease research, the actual magnitudes of
mechanical stress, in particular shear stress and hoop stress resulting from an attenuated afferent arteriole
vasoconstrictive response, are unknown. The overall aim of this proposal is to use multiscale mathematical
modeling to estimate the magnitudes of shear stress and capillary wall stretch in the glomerular capillary
network as a result of decreased afferent arteriole vasoconstrictive responsiveness. We will develop a
“glomerular network model” that calculates flows through the capillaries of an actual, anatomically-accurate
glomerular microvascular network. A feedback model of afferent arteriole resistance will be integrated with the
glomerular network model to represent the complex dynamics of renal autoregulation in our model.
Additionally, we will develop a computational fluid dynamics (CFD) model of a single glomerular capillary,
taking into account the dynamics arising from elastic red blood cell structures flowing in a permeable channel.
Taking a multiscale mathematical modeling approach, for each capillary segment of the glomerular network
model, output of the glomerular network model will be mapped to parameters in the CFD capillary model to
calculate shear stresses on the vessel walls. The mechanical stresses calculated using this approach will be
compared to experimental parameters of previous cell studies to determine the risk of glomerular cell injury
with and without the pathological hemodynamic conditions arising from reduction in afferent arteriole
vasoconstrictive responsiveness. This work will serve as a basis for a glomerular injury risk index in
pathological renal hemodynamic conditions and will inform the design of “glomerulus-on-a-chip”
microphysiological systems. Mechanical forces are known to crucially affect the efficacy of these systems as
models of disease and as drug testing platforms; thus, the proposed project will contribute to development and
establishment of these systems for these contexts of use.
项目总结/摘要
相对于灌注压,传入小动脉的血管收缩反应性降低,
与糖尿病、某些形式的高血压和慢性肾脏疾病中肾小球损伤的进展有关
涉及功能性肾单位丧失的疾病。血管收缩反应性的降低,
传入小动脉增加了传入血流量和肾小球内压,
肾小球细胞上的机械应力(周期性拉伸和流体流动剪切应力)。响应循环
牵张,肾小球系膜细胞增加细胞外基质(ECM)成分沉积,足细胞可能
从肾小球毛细血管脱离。为了响应增加的剪切力,血管内皮细胞增加
炎症标志物的产生。这些结果共同表明,血管收缩作用的减少
传入小动脉相对于灌注压的反应性通过以下方式引起肾小球细胞的损伤:
增加肾小球毛细血管壁的剪切应力和周期性伸展。尽管机械应力-
诱导的肾小球损伤是肾脏疾病研究中普遍接受的概念,
机械应力,特别是由减弱的传入小动脉引起的剪切应力和环向应力
血管收缩反应,未知。该提案的总体目标是使用多尺度数学
建模以估计肾小球毛细血管中的剪切应力和毛细血管壁拉伸的大小
由于传入小动脉血管收缩反应性降低,我们将开发一个
“肾小球网络模型”,计算通过实际的,解剖学上准确的毛细血管的流量,
肾小球微血管网传入小动脉阻力的反馈模型将与
肾小球网络模型来表示我们模型中肾脏自动调节的复杂动力学。
此外,我们将开发一个单一肾小球毛细血管的计算流体动力学(CFD)模型,
考虑到在可渗透通道中流动的弹性红细胞结构引起的动力学。
采用多尺度数学建模方法,对于肾小球网络的每个毛细血管段,
模型,肾小球网络模型的输出将映射到CFD毛细血管模型中的参数,
计算血管壁上的剪切应力。使用这种方法计算的机械应力将是
与先前细胞研究的实验参数相比,以确定肾小球细胞损伤的风险
有或没有由传入小动脉减少引起的病理性血液动力学状况
血管收缩反应性。这项工作将作为肾小球损伤风险指数的基础,
病理性肾血流动力学状况,并将告知“芯片上肾小球”的设计
微生理系统已知机械力对这些系统的功效有关键影响,
疾病模型和药物测试平台;因此,拟议的项目将有助于发展和
为这些使用环境建立这些系统。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulations of Glomerular Shear and Hoop Stresses in Diabetes, Hypertension, and Reduced Renal Mass using a Network Model of a Rat Glomerulus.
- DOI:10.14814/phy2.14577
- 发表时间:2020-09
- 期刊:
- 影响因子:2.5
- 作者:Richfield O;Cortez R;Navar LG
- 通讯作者:Navar LG
Simulations of increased glomerular capillary wall strain in the 5/6-nephrectomized rat.
5/6-否切除大鼠中肾小球毛细血管壁应变增加的模拟。
- DOI:10.1111/micc.12721
- 发表时间:2021-10
- 期刊:
- 影响因子:2.4
- 作者:Richfield, Owen;Cortez, Ricardo;Navar, L. Gabriel
- 通讯作者:Navar, L. Gabriel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Owen Richfield其他文献
Owen Richfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Owen Richfield', 18)}}的其他基金
Development of a computational biomechanics model of the glomerulus to assess risk of mechanical stress-induced glomerular injury in conditions of reduced afferent arteriole vasoconstrictive response.
开发肾小球计算生物力学模型,以评估在传入小动脉血管收缩反应减少的情况下机械应力引起的肾小球损伤的风险。
- 批准号:
9761194 - 财政年份:2019
- 资助金额:
$ 2.95万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 2.95万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 2.95万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 2.95万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 2.95万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 2.95万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 2.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 2.95万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 2.95万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 2.95万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 2.95万 - 项目类别:
Grant-in-Aid for Early-Career Scientists