Development of a computational biomechanics model of the glomerulus to assess risk of mechanical stress-induced glomerular injury in conditions of reduced afferent arteriole vasoconstrictive response.
开发肾小球计算生物力学模型,以评估在传入小动脉血管收缩反应减少的情况下机械应力引起的肾小球损伤的风险。
基本信息
- 批准号:9924241
- 负责人:
- 金额:$ 2.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-10 至 2021-06-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnatomyAttenuatedBloodBlood capillariesBlood flowCapillary Endothelial CellCellsCellular StructuresChronic Kidney FailureComplexComputer SimulationDepositionDevelopmentDiabetes MellitusDimensionsDiseaseDisease modelErythrocytesExtracellular MatrixFeedbackFiltrationGlomerular CapillaryGraphHomeostasisHumanHypertensionIn VitroIndividualInflammatoryInjuryInjury to KidneyKidneyKidney DiseasesLiquid substanceMapsMathematicsMeasurementMechanical StressMechanicsMetabolismModelingNephronsOutputPathologicPerfusionPeriodicityPermeabilityPhysiologicalProductionPropertyProtocols documentationRattusRenal Blood FlowReportingResearchResistanceRiskStressStretchingSystemSystemic blood pressureTestingTranslatingTubeVascular Endothelial CellWorkarterioleattenuationbiomechanical modelcell injurydesigndrug testingexperiencefluid flowfunctional lossglomerular capillary endotheliumhemodynamicsin vivoindexinginflammatory markerkidney cellmathematical analysismathematical modelmechanical forcemesangial cellmicrophysiology systemnetwork modelspodocytepredictive modelingpressureresponseshear stresssolutevasoconstriction
项目摘要
Project Summary/Abstract
A reduction in the vasoconstrictive responsiveness of the afferent arteriole relative to perfusion pressure is
implicated in the progression of glomerular injury in diabetes, some forms of hypertension and chronic kidney
diseases involving the loss of functional nephrons. A reduction of the vasoconstrictive responsiveness of the
afferent arteriole raises afferent blood flow and intraglomerular pressure which is believed to increase
mechanical stress (cyclic stretch and fluid flow shear stress) on the glomerular cells. In response to cyclic
stretch, mesangial cells increase deposition of extracellular matrix (ECM) components and podocytes may
detach from the glomerular capillary. In response to increased shear stress, vascular endothelial cells increase
production of inflammatory markers. These results collectively indicate that a reduced vasoconstrictive
responsiveness of the afferent arteriole relative to perfusion pressure causes injury of glomerular cells by
increasing shear stress on and cyclic stretch of the glomerular capillary walls. Although mechanical stress-
induced glomerular injury is a generally accepted concept in kidney disease research, the actual magnitudes of
mechanical stress, in particular shear stress and hoop stress resulting from an attenuated afferent arteriole
vasoconstrictive response, are unknown. The overall aim of this proposal is to use multiscale mathematical
modeling to estimate the magnitudes of shear stress and capillary wall stretch in the glomerular capillary
network as a result of decreased afferent arteriole vasoconstrictive responsiveness. We will develop a
“glomerular network model” that calculates flows through the capillaries of an actual, anatomically-accurate
glomerular microvascular network. A feedback model of afferent arteriole resistance will be integrated with the
glomerular network model to represent the complex dynamics of renal autoregulation in our model.
Additionally, we will develop a computational fluid dynamics (CFD) model of a single glomerular capillary,
taking into account the dynamics arising from elastic red blood cell structures flowing in a permeable channel.
Taking a multiscale mathematical modeling approach, for each capillary segment of the glomerular network
model, output of the glomerular network model will be mapped to parameters in the CFD capillary model to
calculate shear stresses on the vessel walls. The mechanical stresses calculated using this approach will be
compared to experimental parameters of previous cell studies to determine the risk of glomerular cell injury
with and without the pathological hemodynamic conditions arising from reduction in afferent arteriole
vasoconstrictive responsiveness. This work will serve as a basis for a glomerular injury risk index in
pathological renal hemodynamic conditions and will inform the design of “glomerulus-on-a-chip”
microphysiological systems. Mechanical forces are known to crucially affect the efficacy of these systems as
models of disease and as drug testing platforms; thus, the proposed project will contribute to development and
establishment of these systems for these contexts of use.
项目摘要/摘要
相对于灌注压力,传入小动物的血管收缩反应性降低为
在糖尿病中肾小球损伤的进展中实施,某些形式的高血压和慢性肾脏
涉及功能肾脏丧失的疾病。减少血管收缩的反应性
传入小动脉会增加传入的血液流量和磁性内压,据信它会增加
肾小球细胞上的机械应力(环状拉伸和流体流动应力)。响应循环
伸展,肾小球细胞会增加细胞外基质(ECM)成分和足细胞的沉积
脱离肾小球毛细管。响应增加的剪切应力,血管内皮细胞增加
炎症标记的产生。这些结果共同表明减少了血管收缩
传入小动物相对于灌注压力的反应性会导致肾小球细胞受伤
增加肾小球毛细管壁的剪切应力和循环拉伸。虽然机械应力 -
诱导肾小球损伤是肾脏疾病研究中公认的概念
机械应力,尤其是由衰减的传入Artiole产生的剪切应力和箍应力
血管收缩反应是未知的。该提案的总体目的是使用多尺度数学
建模以估算肾小球毛细管中剪切应力和毛细管壁拉伸的尺寸
网络由于减少传入小动脉血管收缩反应性。我们将发展一个
“肾小球网络模型”计算出流过实际的,解剖学精度的毛细血管
肾小球微血管网络。传入小动脉抗性的反馈模型将与
肾小球网络模型代表我们模型中肾脏自动调节的复杂动力学。
此外,我们将开发单个肾小球毛细管的计算流体动力学(CFD)模型,
考虑到在可渗透通道中流动的弹性红细胞结构引起的动力学。
采用多尺度数学建模方法,适用于肾小球网络的每个毛细管段
模型,肾小球网络模型的输出将映射到CFD毛细管模型中的参数
计算血管壁上的剪切应力。使用这种方法计算的机械应力将是
与先前细胞研究的实验参数相比,以确定肾小球细胞损伤的风险
有和没有病理血流动力学条件,导致传入小动脉的减少
血管收缩的响应能力。这项工作将作为肾小球伤害风险指数的基础
病理肾脏血流动力学条件,将为“片段肾小球”的设计告知
微生物生理系统。已知机械力完全影响这些系统的有效性
疾病模型和作为药物测试平台;因此,拟议的项目将有助于发展和
为这些使用环境建立这些系统。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Simulations of Glomerular Shear and Hoop Stresses in Diabetes, Hypertension, and Reduced Renal Mass using a Network Model of a Rat Glomerulus.
- DOI:10.14814/phy2.14577
- 发表时间:2020-09
- 期刊:
- 影响因子:2.5
- 作者:Richfield O;Cortez R;Navar LG
- 通讯作者:Navar LG
Simulations of increased glomerular capillary wall strain in the 5/6-nephrectomized rat.
- DOI:10.1111/micc.12721
- 发表时间:2021-10
- 期刊:
- 影响因子:2.4
- 作者:Richfield, Owen;Cortez, Ricardo;Navar, L. Gabriel
- 通讯作者:Navar, L. Gabriel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Owen Richfield其他文献
Owen Richfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Owen Richfield', 18)}}的其他基金
Development of a computational biomechanics model of the glomerulus to assess risk of mechanical stress-induced glomerular injury in conditions of reduced afferent arteriole vasoconstrictive response.
开发肾小球计算生物力学模型,以评估在传入小动脉血管收缩反应减少的情况下机械应力引起的肾小球损伤的风险。
- 批准号:
9761194 - 财政年份:2019
- 资助金额:
$ 2.95万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 2.95万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 2.95万 - 项目类别:
Designing novel therapeutics for Alzheimer’s disease using structural studies of tau
利用 tau 蛋白结构研究设计治疗阿尔茨海默病的新疗法
- 批准号:
10678341 - 财政年份:2023
- 资助金额:
$ 2.95万 - 项目类别:
Mechanistic characterization of vaginal microbiome-metabolome associations and metabolite-mediated host inflammation
阴道微生物组-代谢组关联和代谢物介导的宿主炎症的机制特征
- 批准号:
10663410 - 财政年份:2023
- 资助金额:
$ 2.95万 - 项目类别: