Mitochondrial function and glycolytic switch in pathological cardiac hypertrophy
病理性心脏肥大中的线粒体功能和糖酵解转换
基本信息
- 批准号:9925814
- 负责人:
- 金额:$ 58.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAdenovirusesBindingCardiacCardiac MyocytesCell Culture SystemCellsCoupledDataDown-RegulationEchocardiographyEnergy MetabolismEquilibriumGenetic TranscriptionGlucoseGlycolysisHIF1A geneHeartHeart HypertrophyHeart failureHumanHypertrophyImpairmentIschemiaMediator of activation proteinMembrane PotentialsMetabolicMetabolismMitochondriaMitochondrial ProteinsMolecularMultinuclear NMRMusMyocardialNMR SpectroscopyOxidation-ReductionOxidative PhosphorylationOxidative StressPathologicPhenotypePhenylephrinePhysiologicalProductionProteinsProton-Translocating ATPasesProtonsReactive Oxygen SpeciesReporterResearchRodentRoleSignal TransductionStressTechnologyTestingTimeUp-RegulationWarburg EffectYeastsbasecardiogenesisconstrictionfatty acid oxidationheart metabolismimprovedin vivoin vivo Modelinhibitor/antagonistknock-downmitochondrial dysfunctionmitochondrial metabolismoligomycin sensitivity-conferring proteinoperationoverexpressionoxidationpreventresponsetool
项目摘要
Abstract
During the development of heart failure cardiac fuel metabolism switches from predominantly fatty acid oxidation
(FAO) to increased reliance on glucose, especially glycolysis. This metabolic remodeling is generally recognized
and considered ultimately maladaptive for sustaining myocardial energetics and function. The mechanisms
responsible for the switch are poorly understood but appear to be coupled with impaired mitochondrial function.
Downregulations of multiple transcriptional mechanisms, such as PPARa or PGC-1a, for FAO have been
identified in heart failure. Reduced FAO could release the inhibition of glucose use through Randle cycle and
thus promote myocardial glucose utilization. However, this hypothesis does not explain why reduced FAO leads
to predominantly glycolysis uncoupled with glucose oxidation, a phenomenon similar to Warburg effect. In
addition to decreased FAO, multiple aspects of mitochondrial function, in particular, oxidative phosphorylation,
oxidative stress, and redox balance, are also altered in hearts with pathological hypertrophy. These observations
raise an intriguing possibility that increased glycolysis is driven by mitochondrial dysfunction although the
molecular mediator(s) in the switch are elusive. Recently, we found that the expression of mitochondrial ATPase
inhibitor factor 1 (ATPIF1) was increased in rodent hearts or cardiomyocytes (CMs) with pathological hypertrophy.
Upregulation of ATPIF1 in non-cardiomyocytes has been shown to increase glycolysis, to trigger mitochondrial
hyperpolarization and increase the production of mitochondrial reactive oxygen species (mtROS). In our
preliminary study, ATPIF1 overexpression also shifted energy metabolism from mitochondrial oxidation to
glycolysis in CMs. Therefore, we asked whether and how ATPIF1 connects mitochondrial function and glycolysis
in the heart undergoing pathological hypertrophy. The ATPIF1 is well conserved from yeast to human, and it is
known to inhibit the reversed operation of FoF1-ATPase in Complex V (normally functions as ATP synthase) to
hydrolyze ATP and thus maintain the proton gradient during reduced membrane potential, such as ischemia. The
consequence of ATPIF1 upregulation in the non-ischemic heart is unknown. In the proposed study, we will
determine the interaction of ATPIF1 with Complex V under normal and stress conditions and test the hypothesis
that increased ATPIF1 inhibits ATP synthase and triggers the metabolic switch to glycolysis via
stimulation of HIF1a signaling during pathological hypertrophy. We have generated preliminary data and
research tools for the following three specific aims: 1) To test the hypothesis that up-regulation of ATPIF1
increases myocardial glycolysis through enhancing the HIF1α signaling. 2) To determine the molecular
interaction of ATPIF1 and FoF1-ATPase and changes of mitochondrial protein interactome under
physiological and pathological conditions using quantitative Protein Interaction Reporter (PIR)
technology. 3) To determine the in vivo role of ATPIF1 in the metabolic reprogramming and cardiac
response to stress.
摘要
在心力衰竭的发展过程中,心脏燃料代谢从主要的脂肪酸氧化转变为
(FAO)增加对葡萄糖的依赖,尤其是糖酵解。这种代谢重塑通常被认为是
并认为最终不适应维持心肌能量和功能。
对这种开关的原因知之甚少,但似乎与线粒体功能受损有关。
FAO的多种转录机制,如PPARa β或PGC-β 1a β的下调,
减少FAO可以通过Randle循环释放对葡萄糖利用的抑制,
因此促进心肌葡萄糖利用。然而,这一假说并不能解释为什么减少FAO导致心肌葡萄糖代谢异常,
主要是糖酵解与葡萄糖氧化解偶联,这种现象类似于瓦尔堡效应。
除了FAO减少外,线粒体功能的多个方面,特别是氧化磷酸化,
氧化应激和氧化还原平衡也在病理性肥大的心脏中改变。
提出了一个有趣的可能性,即糖酵解的增加是由线粒体功能障碍驱动的,尽管
近年来,我们发现线粒体ATP酶的表达与线粒体膜电位的变化密切相关。
抑制因子1(ATPIF 1)在啮齿动物心脏或心肌细胞(CM)病理性肥大增加。
在非心肌细胞中ATPIF 1的上调已经显示出增加糖酵解,从而触发线粒体
超极化和增加线粒体活性氧(mtROS)的产生。
初步研究表明,ATPIF 1过表达也使能量代谢从线粒体氧化转移到了
因此,我们想知道ATPIF 1是否以及如何将线粒体功能和糖酵解联系起来,
ATPIF 1在从酵母到人的过程中是很保守的,它是一种蛋白质,
已知抑制复合物V中FoF 1-ATP酶的反向操作(通常作为ATP合酶起作用),
在降低的膜电位(例如缺血)期间,质子酶水解ATP并因此维持质子梯度。
ATPIF 1在非缺血性心脏中上调的结果尚不清楚。在这项研究中,我们将
确定ATPIF 1与复合物V在正常和应激条件下的相互作用,并检验假设
增加ATPIF 1抑制ATP合酶,并通过以下途径触发代谢转换为糖酵解:
我们已经获得了初步的数据,
研究工具有以下三个具体目的:1)检验ATPIF 1的上调
通过增强HIF 1 α信号通路增加心肌糖酵解。
ATPIF 1与FoF 1-ATP酶相互作用及线粒体蛋白质相互作用组的变化
使用定量蛋白质相互作用报告物(PIR)的生理和病理条件
3)确定ATPIF 1在代谢重编程和心脏重编程中的体内作用。
对压力的反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rong Tian其他文献
Rong Tian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rong Tian', 18)}}的其他基金
Mitochondrial metabolism and macrophage function post MI
心肌梗死后线粒体代谢和巨噬细胞功能
- 批准号:
10630833 - 财政年份:2020
- 资助金额:
$ 58.64万 - 项目类别:
Mitochondrial metabolism and macrophage function post MI
心肌梗死后线粒体代谢和巨噬细胞功能
- 批准号:
10421059 - 财政年份:2020
- 资助金额:
$ 58.64万 - 项目类别:
Fatty acid oxidation suppresses cardiac hypertrophy
脂肪酸氧化抑制心脏肥大
- 批准号:
9100917 - 财政年份:2015
- 资助金额:
$ 58.64万 - 项目类别:
Fatty acid oxidation suppresses cardiac hypertrophy
脂肪酸氧化抑制心脏肥大
- 批准号:
8977407 - 财政年份:2015
- 资助金额:
$ 58.64万 - 项目类别:
Complex I Deficiency Triggered Acceleration of Heart Failure
复合物 I 缺乏会加速心力衰竭
- 批准号:
8676927 - 财政年份:2011
- 资助金额:
$ 58.64万 - 项目类别:
Complex I Deficiency Triggered Acceleration of Heart Failure
复合物 I 缺乏会加速心力衰竭
- 批准号:
8318138 - 财政年份:2011
- 资助金额:
$ 58.64万 - 项目类别:
相似海外基金
cGAS-STING Pathway Targeting Replicative Adenoviruses with CD46 Tropism and AFP Promoter Conditional Replication Restriction for the Treatment of Hepatocellular Carcinoma
cGAS-STING 通路靶向具有 CD46 趋向性和 AFP 启动子的复制腺病毒条件性复制限制用于治疗肝细胞癌
- 批准号:
10436626 - 财政年份:2021
- 资助金额:
$ 58.64万 - 项目类别:
Glioma therapy with oncolytic adenoviruses and immunometabolic adjuvants
溶瘤腺病毒和免疫代谢佐剂治疗胶质瘤
- 批准号:
10557162 - 财政年份:2021
- 资助金额:
$ 58.64万 - 项目类别:
Molecular therapy of replication-competent adenoviruses targeting characteristic gene mutations found in mesothelioma
针对间皮瘤中发现的特征基因突变的具有复制能力的腺病毒的分子疗法
- 批准号:
21K08199 - 财政年份:2021
- 资助金额:
$ 58.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Glioma therapy with oncolytic adenoviruses and immunometabolic adjuvants
溶瘤腺病毒和免疫代谢佐剂治疗胶质瘤
- 批准号:
10330464 - 财政年份:2021
- 资助金额:
$ 58.64万 - 项目类别:
Structural characterization of nucleoprotein cores of human adenoviruses
人腺病毒核蛋白核心的结构表征
- 批准号:
9807741 - 财政年份:2019
- 资助金额:
$ 58.64万 - 项目类别:
Molecular biology and pathogenesis of fowl adenoviruses
禽腺病毒的分子生物学和发病机制
- 批准号:
41625-2013 - 财政年份:2018
- 资助金额:
$ 58.64万 - 项目类别:
Discovery Grants Program - Individual
The therapeutic strategies with augmented replications of oncolytic adenoviruses for malignant mesothelioma
溶瘤腺病毒增强复制治疗恶性间皮瘤的治疗策略
- 批准号:
18K15937 - 财政年份:2018
- 资助金额:
$ 58.64万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Molecular biology and pathogenesis of fowl adenoviruses
禽腺病毒的分子生物学和发病机制
- 批准号:
41625-2013 - 财政年份:2017
- 资助金额:
$ 58.64万 - 项目类别:
Discovery Grants Program - Individual
Exploring the effects of nutrient deprivation on T cells and oncolytic adenoviruses, in order to create immune activators for tumour therapy
探索营养剥夺对 T 细胞和溶瘤腺病毒的影响,以创造用于肿瘤治疗的免疫激活剂
- 批准号:
1813152 - 财政年份:2016
- 资助金额:
$ 58.64万 - 项目类别:
Studentship
Research on detection of novel adenoviruses by genetic methods
新型腺病毒的基因检测研究
- 批准号:
16K09118 - 财政年份:2016
- 资助金额:
$ 58.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




