A Comprehensive approach to bacterial osmotolerance
细菌渗透耐受的综合方法
基本信息
- 批准号:9925727
- 负责人:
- 金额:$ 42.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-11 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:Adaptive BehaviorsAddressAffectAreaBacteriaBacterial ModelBiophysicsCell SurvivalCell VolumesCell WallCell membraneCell modelCellsComputer ModelsCoupledCrowdingCrystallizationCytoplasmDataDetergentsDisulfidesElasticityElectrophysiology (science)EnsureEnterobacteriaceaeEnvironmentEscherichia coliFresh WaterGeometryIndividualKineticsLinkLiquid substanceMechanicsMediatingMembraneModelingModernizationMolecularMolecular ConformationMutationOpticsOsmolar ConcentrationOsmotic ShocksPathway interactionsPeptidoglycanPermeabilityPharmacy SchoolsPhasePopulationPreparationProcessPropertyRainRecoveryRefractive IndicesRelaxationRestRoleRuptureShockSoilSpeedStretchingStructureSwellingTechniquesTestingThermodynamicsTimeVideo MicroscopyWaterWeightWorkbasebiophysical analysiscell envelopecommensal bacteriacrosslinkdensitydesignenteric pathogenexperimental studyfitnessin vivolight scatteringmedical schoolsmetabolomicsmicroorganismmutantpatch clamppathogenpathogenic bacteriaphysical modelresponsesimulationsolutestop flow technique
项目摘要
Project Summary
Enteric bacteria and most opportunistic pathogens transmitted through soil and fresh water show exceptional
adaptability to a range of environments. Part of their adaptive potential is the ability to survive drastic osmolarity
changes. Upon a sudden dilution of external medium, such as in the rain, bacteria evade mechanical rupture
by engaging tension-activated channels that act as osmolyte release valves. The low-threshold MscS and high-
threshold MscL, the two channel species that mediate the bulk of osmolyte exchange in E. coli, have been
extensively studied in terms of their structure and gating mechanisms. Yet, despite the progress in biophysical
studies of these individual mechanosensitive channels, little is known about the actual release process that
takes place in the cell upon abrupt osmotic downshift. There is almost no data on the extent and rate of swelling,
the kinetics of osmolyte release, the molecules that escape through specific channels, when and how the
transient permeability ceases, and finally, how all these parameters are linked to osmotic fitness. Our current
analysis of the mechanism strongly suggests two key aspects: (i) the channels must release osmolytes fast
enough to outpace the osmotic water influx and curb cell swelling; on the other hand (ii) the massive osmolyte
dissipation must be firmly terminated by inactivation of the low-threshold channel to facilitate recovery. The
proposed project aims at a self-consistent kinetic/physical model of the rescuing process based on a
comprehensive phenomenological description of osmotically-induced solute exchange in live cultures of E.
coli, cell envelope mechanics, and on spatial and thermodynamic properties of channel gating. (1) We will
determine identities and availabilities of major osmolytes leaving cells through specific channels during osmotic
shock using modern metabolomics. We will study the effects of major permeable and impermeable osmolytes
on MscS and MscL gating and visualize permeation and interactions which may affect state distributions in MD
simulations. (2) To address several remaining questions about the mechanism of MscS opening and
inactivation, we will determine crystal structures of mutants with stabilized resting and open states. The
transition pathways between the states will then be reconstructed in simulations. (3) We will employ the
stopped-flow technique to record the kinetics of light scattering in live cultures and assess permeabilities of the
cell envelope to water and osmolytes; we will correlate the exchange rates with osmotic cell viability. Using
fluidics and videomicroscopy we will to determine the elasticity of the cell wall and the amount of membrane
reservoir inside the stretchable peptidoglycan. Parallel electrophysiological analysis will provide channel
densities and parameters for gating and inactivation. The detailed picture of the concerted action of two non-
redundant channels in the course of osmotic permeability response and a set of ‘vital’ parameters will provide
grounds for a quantitative model which would predict whether a particular magnitude and speed of osmotic
downshift will be tolerable or lethal.
项目摘要
通过土壤和淡水传播的肠道细菌和大多数机会致病菌显示出特殊的
对各种环境的适应性。它们的适应性潜力的一部分是在剧烈的渗透压下生存的能力
变化在外部介质突然稀释时,例如在雨中,细菌逃避机械破裂
通过接合作为渗透剂释放阀的张力激活通道。低阈值MSCS和高-
阈值MscL是介导E.大肠杆菌,
在其结构和门控机制方面进行了广泛的研究。然而,尽管生物物理学取得了进展,
尽管对这些单独的机械敏感通道进行了研究,但对实际的释放过程知之甚少,
发生在细胞内突然的渗透压降低时。几乎没有关于肿胀程度和速度的数据,
渗透剂释放的动力学,通过特定通道逃逸的分子,
瞬时渗透性停止,最后,所有这些参数是如何与渗透适应性。我们目前
对该机制的分析有力地表明了两个关键方面:(i)通道必须快速释放渗透剂
足以超过渗透水流入并抑制细胞肿胀;另一方面(ii)大量的渗透剂
耗散必须通过低阈值沟道的失活来牢固地终止以促进恢复。的
拟议的项目旨在建立一个自洽的动力学/物理模型的救援过程的基础上,
对E.
大肠杆菌,细胞被膜力学,以及通道门控的空间和热力学性质。(1)我们将
确定在渗透过程中通过特定通道离开细胞的主要渗透剂的身份和可用性
现代代谢组学的研究。我们将研究主要渗透性和非渗透性渗透剂的影响
在MscS和MscL门控和可视化渗透和相互作用,可能会影响状态分布在MD
模拟(2)为了解决有关MSCS开放机制的几个遗留问题,
失活后,我们将确定具有稳定的静息态和开放态的突变体的晶体结构。的
然后将在模拟中重建状态之间的过渡路径。(3)我们将采用
停流技术,以记录活培养物中光散射的动力学,并评估
细胞被膜与水和渗透剂的交换率;我们将把交换率与渗透细胞活力联系起来。使用
我们将使用射流和视频显微镜来确定细胞壁的弹性和膜的量
可拉伸肽聚糖内的储存器。并行电生理分析将提供通道
用于门控和灭活的密度和参数。两非一致行动的详细画面-
冗余通道的过程中渗透渗透率的反应和一组'重要的'参数将提供
一个定量模型的基础,该模型将预测一个特定的渗透压的大小和速度,
降档将是可容忍的或致命的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SERGEI I SUKHAREV其他文献
SERGEI I SUKHAREV的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SERGEI I SUKHAREV', 18)}}的其他基金
A Comprehensive approach to bacterial osmotolerance
细菌渗透耐受的综合方法
- 批准号:
10163120 - 财政年份:2018
- 资助金额:
$ 42.03万 - 项目类别:
A Comprehensive approach to bacterial osmotolerance
细菌渗透耐受的综合方法
- 批准号:
10407575 - 财政年份:2018
- 资助金额:
$ 42.03万 - 项目类别:
The bacterial mechanosentitive channel as a multimodal sensor device
作为多模式传感器装置的细菌机械感应通道
- 批准号:
8471474 - 财政年份:2013
- 资助金额:
$ 42.03万 - 项目类别:
GATING OF THE LARGE-CONDUCTANCE MECHANOSENSITIVE CHANNEL
大电导机械敏感通道的门控
- 批准号:
6499440 - 财政年份:2000
- 资助金额:
$ 42.03万 - 项目类别:
Roles of Hydration and Lipids in Mechanosensitive Channel Gating
水合和脂质在机械敏感通道门控中的作用
- 批准号:
7236226 - 财政年份:2000
- 资助金额:
$ 42.03万 - 项目类别:
Roles of Hydration and Lipids in Mechanosensitive Channel Gating
水合和脂质在机械敏感通道门控中的作用
- 批准号:
7612737 - 财政年份:2000
- 资助金额:
$ 42.03万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 42.03万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 42.03万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 42.03万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 42.03万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 42.03万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 42.03万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 42.03万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 42.03万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 42.03万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 42.03万 - 项目类别:
Research Grant