Dual peptide presentation from bioengineered carriers to potentiate stromal cell function and tissue repair
生物工程载体的双肽呈递可增强基质细胞功能和组织修复
基本信息
- 批准号:9930177
- 负责人:
- 金额:$ 21.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlginatesAnti-inflammatoryBiocompatible MaterialsBiomedical EngineeringBiomimeticsBone RegenerationBone TransplantationCalvariaCell AdhesionCell SurvivalCell TherapyCell TransplantationCell TransplantsCell physiologyCellsCuesCultured CellsDefectDevelopmentEffectivenessEngineeringFractureGelHistologicHumanHydrogelsImpaired wound healingImpairmentImplantIn SituIn VitroInstructionKnowledgeLigandsMeasuresMechanicsMesenchymalMesenchymal DifferentiationMineralsOligopeptidesOsteoblastsOsteogenesisPeptide Signal SequencesPeptidesPharmacologyProductionRGD (sequence)Recombinant ProteinsResearchRodentRoleSiteSourceSpeedStem cellsStimulusStromal CellsSystemTestingTherapeuticTissue EngineeringTissue TherapyTissuesTranslatingTransplantationTransplanted tissueVascular Endothelial Growth FactorsVascularizationangiogenesisbasebiophysical propertiesbonebone healingbone qualitycostcrosslinkdensityhealingimaging modalityimplantationimprovedin vivoinnovationlysylglycinemechanical propertiesnon-invasive imagingnovel strategiesolder patientosteogenicregenerativerepairedresponsestemsuccesstissue repairtranslational approach
项目摘要
PROJECT SUMMARY
Of the greater than 6 million fractures occurring yearly in the US, 5-20% will result in nonunion or delayed
union. Cell based therapies represent an exciting alternative to traditional bone grafting or implants, but cell
transplantation requires a tailorable substrate to provide necessary cues to implanted cells. Mesenchymal
stem/stromal cells (MSCs) are an attractive cell source for use in tissue engineering because of their robust
secretion of proangiogenic and anti-inflammatory trophic factors. Upon appropriate stimulation, MSCs can
directly contribute to bone formation by differentiating to bone-forming osteoblasts, yet osteogenically induced
MSCs suffer from reduced secretion of proangiogenic factors. We demonstrated that the presentation of a
proangiogenic peptide, Gly-His-Lys (GHK), to MSCs entrapped in alginate hydrogels resulted in up to a 4-fold
increase in their proangiogenic potential. We previously incorporated peptide ligands such as Arg-Gly-Asp
(RGD) to facilitate cell adhesion to ionically-crosslinked alginate and photocrosslinkable alginate gels (PAHs)
with more controlled degradation profiles. RGD stimulates osteogenic differentiation of MSCs but may impair
secretion of endogenous proangiogenic cues. Thus, there is a pressing need for biomaterials that can
simultaneously enhance the proangiogenic and osteogenic potential of transplanted MSCs to maximize their
efficacy in cell based therapies. Our central hypothesis is MSCs can be simultaneously stimulated to undergo
osteogenic differentiation while secreting potent proangiogenic cues, translating to enhanced therapeutic
potential by increasing local vascularization and bone formation. Aim 1. Determine the role of dual peptide
signaling on MSC osteogenic differentiation and proangiogenic potential when entrapped in PAHs. We
will synthesize PAHs with varying densities of RGD and GHK. Changes in the biophysical properties of the gel,
as well as the osteogenic and proangiogenic response of entrapped human MSCs will be determined. Aim 2.
Define the necessary biophysical properties of peptide-presenting PAHs to instruct MSC osteogenic
and proangiogenic potential. We will examine the role of each peptide on osteogenic differentiation and
proangiogenic potential, while measuring the contributions of cell adhesion and substrate bulk stiffness to MSC
response. Aim 3. Demonstrate the therapeutic potential of MSCs deployed in dual peptide-modified
alginate to promote vascularization and bone repair in rodent critical-sized calvarial bone defects. We
will characterize the capacity of MSCs implanted in peptide-presenting PAHs to promote bone repair in an
orthotopic defect. The role of implanted cells, quantity, and quality of bone formation will be assessed using
noninvasive imaging modalities and histological analysis. The proposed research is innovative because it
exploits the activity of two distinct peptides with a biodegradable hydrogel to potentiate the reparative potential
of MSCs. This research will provide a novel approach for regulating bone formation, and the strategies have
potential in enhancing the efficacy of materials-based therapies for tissue repair.
项目总结
在美国每年发生的600多万例骨折中,5%-20%会导致骨不连或延迟
友联市。基于细胞的疗法代表了传统骨移植或植入物的一种令人兴奋的替代方案,但细胞
移植需要一种可裁剪的底物,为移植的细胞提供必要的线索。间充质
干细胞/基质细胞(MSCs)是一种有吸引力的细胞来源,用于组织工程,因为其强大的
分泌促血管生成和抗炎营养因子。在适当的刺激下,MSCs可以
通过分化为成骨细胞直接促进骨形成,但以成骨方式诱导
MSCs存在促血管生成因子分泌减少的问题。我们演示了一个
将促血管生成多肽Gly-His-Lys(GHK)包埋在藻酸盐水凝胶中,使MSCs的生长速度提高4倍
它们的促血管生成潜力增加。我们之前加入了多肽配体,如Arg-Gly-Asp
(RGD)促进细胞与离子交联型海藻酸盐和光交联型海藻酸凝胶(PAHs)的黏附
具有更多受控的降解曲线。RGD促进MSCs的成骨分化,但可能会损害
内源性促血管生成信号的分泌。因此,迫切需要一种能够
同时增强移植的MSCs的促血管生成和成骨能力,以最大限度地提高其
在基于细胞的治疗中的疗效。我们的中心假设是骨髓间充质干细胞可以同时被刺激经历
成骨分化,同时分泌有效的促血管生成信号,转化为强化治疗
通过增加局部血管形成和骨形成来发挥潜力。目的1.确定双肽的作用
包裹在多环芳烃中的MSC成骨分化和促血管生成潜能的信号。我们
将合成不同密度的RGD和GHK的多环芳烃。凝胶的生物物理性质的变化,
此外,还将确定包裹的人MSCs的成骨和促血管生成反应。目标2.
确定多肽递呈多环芳烃的必要生物物理性质以指导MSC成骨
和促血管生成潜能。我们将研究每个肽在成骨分化和成骨中的作用。
促血管生成潜能,同时测量细胞黏附和基质整体硬度对MSC的贡献
回应。目的3.证实骨髓间充质干细胞在双肽修饰中的治疗潜力
藻酸盐可促进啮齿动物临界大小的颅骨缺损的血管形成和骨修复。我们
将表征骨髓间充质干细胞植入多肽递呈多环芳烃促进骨修复的能力
原位缺陷。植入细胞的作用、骨形成的数量和质量将通过
非侵入性成像方式和组织学分析。这项拟议的研究具有创新性,因为它
利用两种不同的多肽的活性和可生物降解的水凝胶来增强修复潜力
骨髓间充质干细胞。这项研究将为调控骨形成提供一种新的方法,并且策略已经
提高以材料为基础的组织修复疗法疗效的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J. Kent Leach其他文献
Biofabrication of engineered tissues by 3D bioprinting of tissue specific high cell-density bioinks
通过对组织特异性高细胞密度生物墨水进行3D生物打印来进行工程化组织的生物制造
- DOI:
10.1016/j.mattod.2025.03.021 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:22.000
- 作者:
Oju Jeon;Hyoeun Park;J. Kent Leach;Eben Alsberg - 通讯作者:
Eben Alsberg
In Vitro Models for Studying Transport Across Epithelial Tissue Barriers
- DOI:
10.1007/s10439-018-02124-w - 发表时间:
2018-09-14 - 期刊:
- 影响因子:5.400
- 作者:
Navein Arumugasaamy;Javier Navarro;J. Kent Leach;Peter C. W. Kim;John P. Fisher - 通讯作者:
John P. Fisher
Ultrastructure and growth factor content of equine platelet-rich fibrin gels.
马富含血小板的纤维蛋白凝胶的超微结构和生长因子含量。
- DOI:
10.2460/ajvr.75.4.392 - 发表时间:
2014 - 期刊:
- 影响因子:1
- 作者:
J. Textor;K. Murphy;J. Kent Leach;F. Tablin - 通讯作者:
F. Tablin
Macrophage and osteosarcoma cell crosstalk is dependent on oxygen tension and 3D culture
巨噬细胞与骨肉瘤细胞的相互作用依赖于氧张力和三维培养。
- DOI:
10.1016/j.bioadv.2024.214154 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:6.000
- 作者:
Katherine H. Griffin;Isabel S. Sagheb;Thomas P. Coonan;Fernando A. Fierro;R. Lor Randall;J. Kent Leach - 通讯作者:
J. Kent Leach
J. Kent Leach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J. Kent Leach', 18)}}的其他基金
MUSCLE: MUsculoSkeletal Clinical Learning Experience Transdisciplinary Musculoskeletal Research Training Program
肌肉:肌肉骨骼临床学习体验跨学科肌肉骨骼研究培训计划
- 批准号:
10410848 - 财政年份:2022
- 资助金额:
$ 21.56万 - 项目类别:
ORS-ISFR 17th International Biennial Meeting
ORS-ISFR第17届国际双年会
- 批准号:
10540642 - 财政年份:2022
- 资助金额:
$ 21.56万 - 项目类别:
MUSCLE: MUsculoSkeletal Clinical Learning Experience Transdisciplinary Musculoskeletal Research Training Program
肌肉:肌肉骨骼临床学习体验跨学科肌肉骨骼研究培训计划
- 批准号:
10612446 - 财政年份:2022
- 资助金额:
$ 21.56万 - 项目类别:
Identifying the superior ossification pathway for tissue engineered approaches to long bone repair
确定组织工程方法修复长骨的最佳骨化途径
- 批准号:
10230915 - 财政年份:2021
- 资助金额:
$ 21.56万 - 项目类别:
Identifying the superior ossification pathway for tissue engineered approaches to long bone repair
确定组织工程方法修复长骨的最佳骨化途径
- 批准号:
10591573 - 财政年份:2021
- 资助金额:
$ 21.56万 - 项目类别:
Identifying the superior ossification pathway for tissue engineered approaches to long bone repair
确定组织工程方法修复长骨的最佳骨化途径
- 批准号:
10376368 - 财政年份:2021
- 资助金额:
$ 21.56万 - 项目类别:
Dual peptide presentation from bioengineered carriers to potentiate stromal cell function and tissue repair
生物工程载体的双肽呈递可增强基质细胞功能和组织修复
- 批准号:
9320107 - 财政年份:2017
- 资助金额:
$ 21.56万 - 项目类别:
Engineering the innate immune response to Staphaureus infection
设计针对葡萄球菌感染的先天免疫反应
- 批准号:
10212940 - 财政年份:2017
- 资助金额:
$ 21.56万 - 项目类别:
Dual peptide presentation from bioengineered carriers to potentiate stromal cell function and tissue repair
生物工程载体的双肽呈递可增强基质细胞功能和组织修复
- 批准号:
9883782 - 财政年份:2017
- 资助金额:
$ 21.56万 - 项目类别:
Engineering the innate immune response to Staphaureus infection
设计针对葡萄球菌感染的先天免疫反应
- 批准号:
9401775 - 财政年份:2017
- 资助金额:
$ 21.56万 - 项目类别:
相似海外基金
Étude des interactions de sorption et de séquestration de polluants sur des alginates
海藻酸盐污染物吸附与封存相互作用研究
- 批准号:
571945-2022 - 财政年份:2022
- 资助金额:
$ 21.56万 - 项目类别:
University Undergraduate Student Research Awards
Engineering an Islet Thread from zwitterionically modified alginates for type 1 diabetes
利用两性离子改性藻酸盐设计胰岛丝,用于治疗 1 型糖尿病
- 批准号:
9910390 - 财政年份:2018
- 资助金额:
$ 21.56万 - 项目类别:
Engineering an Islet Thread from zwitterionically modified alginates for type 1 diabetes
利用两性离子改性藻酸盐设计胰岛丝,用于治疗 1 型糖尿病
- 批准号:
10402773 - 财政年份:2018
- 资助金额:
$ 21.56万 - 项目类别:
ALGIPRO - Alginates by Production Scale Fermentation and Epimerisation
ALGIPRO - 通过生产规模发酵和差向异构化生产海藻酸盐
- 批准号:
102148 - 财政年份:2016
- 资助金额:
$ 21.56万 - 项目类别:
Collaborative R&D
Bioactive Alginates and Obesity
生物活性藻酸盐与肥胖
- 批准号:
BB/G00563X/1 - 财政年份:2008
- 资助金额:
$ 21.56万 - 项目类别:
Research Grant














{{item.name}}会员




