Novel machine learning approaches for improving structural discrimination in cryo-electron tomography

用于改善冷冻电子断层扫描结构辨别的新型机器学习方法

基本信息

  • 批准号:
    9973462
  • 负责人:
  • 金额:
    $ 34.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-10 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary Cellular cryo-electron tomography (Cryo-ET) has made possible the observation of cellular organelles and macromolecular complexes at nanometer resolution with native conformations. The rapid increasing amount of Cryo-ET data available however brings along some major challenges for analysis which we will timely ad- dress in this proposal. We will design novel data-driven machine learning algorithms for improving structural discrimination and resolution. In particular, we have the following specific aims: (1) We will develop a novel Autoencoder and Iterative region Matching (AIM) algorithm for marker-free alignment of image tilt-series to re- construct tomograms with improved resolution; (2) We will develop a saliency-based auto-picking algorithm for better detecting macromolecular complexes, and combine it with an innovative 2D-to-3D framework to further improve structure detection accuracy; (3) We will design an end-to-end convolutional model for pose-invariant clustering of subtomograms. This model will produce an initial clustering which will be refined by a new subto- mogram averaging algorithm that automatically down-weights subtomograms of noise and little contribution; (4) We will perform experimental evaluations by using previously reported bacterial secretion systems and mito- chondrial ultrastructures datasets to improve the final resolution. Implementing algorithms in Aims 1-3, we will develop a user-friendly open-source graphical user interface -tom to directly benefit the scientific community. -tom will be systematically compared with existing software including IMOD, EMAN2, and Relion on simulated and benchmark datasets. To facilitate distribution, -tom will be integrated into existing software platforms Sci- pion and TomoMiner. Our data-driven algorithms and software not only will facilitate and accelerate the future use of Cryo-ET, but also can be readily used on analyzing the existing large amounts of Cryo-ET data to im- prove our understanding of the structure, function, and spatial organization of macromolecular complexes in situ.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Min Xu其他文献

Min Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Min Xu', 18)}}的其他基金

Ultrasonic-tagged remote interferometric flowmetry for brain activity
用于大脑活动的超声波标记远程干涉流量测量
  • 批准号:
    10731255
  • 财政年份:
    2023
  • 资助金额:
    $ 34.3万
  • 项目类别:
Novel machine learning approaches for improving structural discrimination in cryo-electron tomography
用于改善冷冻电子断层扫描结构辨别的新型机器学习方法
  • 批准号:
    10454131
  • 财政年份:
    2020
  • 资助金额:
    $ 34.3万
  • 项目类别:
Novel machine learning approaches for improving structural discrimination in cryo-electron tomography
用于改善冷冻电子断层扫描结构辨别的新型机器学习方法
  • 批准号:
    10187596
  • 财政年份:
    2020
  • 资助金额:
    $ 34.3万
  • 项目类别:
Novel machine learning approaches for improving structural discrimination in cryo-electron tomography-Administrative Supplement
用于改善冷冻电子断层扫描结构辨别的新型机器学习方法-行政补充
  • 批准号:
    10388867
  • 财政年份:
    2020
  • 资助金额:
    $ 34.3万
  • 项目类别:
Novel machine learning approaches for improving structural discrimination in cryo-electron tomography
用于改善冷冻电子断层扫描结构辨别的新型机器学习方法
  • 批准号:
    10620355
  • 财政年份:
    2020
  • 资助金额:
    $ 34.3万
  • 项目类别:

相似海外基金

Medcircuit, the algorithmic software reducing waiting times in emergency department and general practice waiting rooms.
MedCircuit,一种算法软件,可减少急诊科和全科候诊室的等待时间。
  • 批准号:
    133416
  • 财政年份:
    2018
  • 资助金额:
    $ 34.3万
  • 项目类别:
    Feasibility Studies
SHF: Small: Programming Abstractions for Algorithmic Software Synthesis
SHF:小型:算法软件综合的编程抽象
  • 批准号:
    0916351
  • 财政年份:
    2009
  • 资助金额:
    $ 34.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了