Novel machine learning approaches for improving structural discrimination in cryo-electron tomography
用于改善冷冻电子断层扫描结构辨别的新型机器学习方法
基本信息
- 批准号:10454131
- 负责人:
- 金额:$ 32.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-10 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmic SoftwareAlgorithmsBackBenchmarkingBiological ProcessCellsCommunitiesComputer AnalysisComputer softwareCryo-electron tomographyDataData AnalysesData SetDetectionDiscriminationEvaluationFutureGaussian modelHourImageIn SituKnowledgeLaplacianLiteratureMachine LearningMacromolecular ComplexesManualsMethodsMitochondriaModelingMolecular ConformationMonitorNeurophysiology - biologic functionNoiseOrganellesPerformanceProcessPublishingReportingResolutionSeriesSignal TransductionStructureSystemTechniquesTestingTimeTomogramWeightWorkautoencoderautomated algorithmbasedeep learningdesignfallsfeature detectiongraphical user interfaceimprovedinnovationinsightmachine learning algorithmnanonanometer resolutionnovelnovel strategiesopen sourceparticlepi-Mesonsprogramsreconstructionsuccessuser-friendly
项目摘要
Project Summary
Cellular cryo-electron tomography (Cryo-ET) has made possible the observation of cellular organelles and
macromolecular complexes at nanometer resolution with native conformations. The rapid increasing amount
of Cryo-ET data available however brings along some major challenges for analysis which we will timely ad-
dress in this proposal. We will design novel data-driven machine learning algorithms for improving structural
discrimination and resolution. In particular, we have the following specific aims: (1) We will develop a novel
Autoencoder and Iterative region Matching (AIM) algorithm for marker-free alignment of image tilt-series to re-
construct tomograms with improved resolution; (2) We will develop a saliency-based auto-picking algorithm for
better detecting macromolecular complexes, and combine it with an innovative 2D-to-3D framework to further
improve structure detection accuracy; (3) We will design an end-to-end convolutional model for pose-invariant
clustering of subtomograms. This model will produce an initial clustering which will be refined by a new subto-
mogram averaging algorithm that automatically down-weights subtomograms of noise and little contribution; (4)
We will perform experimental evaluations by using previously reported bacterial secretion systems and mito-
chondrial ultrastructures datasets to improve the final resolution. Implementing algorithms in Aims 1-3, we will
develop a user-friendly open-source graphical user interface -tom to directly benefit the scientific community.
-tom will be systematically compared with existing software including IMOD, EMAN2, and Relion on simulated
and benchmark datasets. To facilitate distribution, -tom will be integrated into existing software platforms Sci-
pion and TomoMiner. Our data-driven algorithms and software not only will facilitate and accelerate the future
use of Cryo-ET, but also can be readily used on analyzing the existing large amounts of Cryo-ET data to im-
prove our understanding of the structure, function, and spatial organization of macromolecular complexes in
situ.
项目摘要
细胞冷冻电子断层扫描(Cryo-ET)使观察细胞器成为可能,
高分子复合物在纳米分辨率与天然构象。快速增长的数量
然而,可用的Cryo-ET数据带来了沿着一些主要的分析挑战,我们将及时进行分析。
穿上这个提案。我们将设计新的数据驱动的机器学习算法,以改善结构
辨别和解决。具体而言,我们有以下具体目标:(1)我们将开发一种新的
自动编码器和迭代区域匹配(AIM)算法的图像倾斜序列的无标记对齐,以重新
构造具有改进分辨率的断层图像;(2)我们将开发一种基于显著性的自动拾取算法,
更好地检测大分子复合物,并将其与创新的2D到3D框架相结合,进一步
提高了结构检测准确率;(3)设计了一种端到端的卷积模型,
子断层图像的聚类。该模型将产生一个初始聚类,该聚类将由一个新的子聚类进行细化。
mogram平均算法,自动降低权重的子断层图像的噪声和小的贡献;(4)
我们将使用先前报道的细菌分泌系统和线粒体进行实验评估,
显微超微结构数据集,以提高最终分辨率。实现目标1-3中的算法,我们将
开发一个用户友好的开源图形用户界面-tom,以直接使科学界受益。
-tom将与现有的软件,包括IMOD,EMAN 2和Relion进行系统的模拟比较,
和基准数据集。为了便于分发,-tom将被集成到现有的软件平台Sci-
π介子和TomoMiner。我们的数据驱动算法和软件不仅将促进和加速未来
使用Cryo-ET,但也可以很容易地用于分析现有的大量Cryo-ET数据,以改善
证明我们的结构,功能和大分子复合物的空间组织的理解,
原地。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Min Xu其他文献
Min Xu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Min Xu', 18)}}的其他基金
Ultrasonic-tagged remote interferometric flowmetry for brain activity
用于大脑活动的超声波标记远程干涉流量测量
- 批准号:
10731255 - 财政年份:2023
- 资助金额:
$ 32.74万 - 项目类别:
Novel machine learning approaches for improving structural discrimination in cryo-electron tomography
用于改善冷冻电子断层扫描结构辨别的新型机器学习方法
- 批准号:
9973462 - 财政年份:2020
- 资助金额:
$ 32.74万 - 项目类别:
Novel machine learning approaches for improving structural discrimination in cryo-electron tomography
用于改善冷冻电子断层扫描结构辨别的新型机器学习方法
- 批准号:
10187596 - 财政年份:2020
- 资助金额:
$ 32.74万 - 项目类别:
Novel machine learning approaches for improving structural discrimination in cryo-electron tomography-Administrative Supplement
用于改善冷冻电子断层扫描结构辨别的新型机器学习方法-行政补充
- 批准号:
10388867 - 财政年份:2020
- 资助金额:
$ 32.74万 - 项目类别:
Novel machine learning approaches for improving structural discrimination in cryo-electron tomography
用于改善冷冻电子断层扫描结构辨别的新型机器学习方法
- 批准号:
10620355 - 财政年份:2020
- 资助金额:
$ 32.74万 - 项目类别:
相似海外基金
Medcircuit, the algorithmic software reducing waiting times in emergency department and general practice waiting rooms.
MedCircuit,一种算法软件,可减少急诊科和全科候诊室的等待时间。
- 批准号:
133416 - 财政年份:2018
- 资助金额:
$ 32.74万 - 项目类别:
Feasibility Studies
SHF: Small: Programming Abstractions for Algorithmic Software Synthesis
SHF:小型:算法软件综合的编程抽象
- 批准号:
0916351 - 财政年份:2009
- 资助金额:
$ 32.74万 - 项目类别:
Standard Grant