Mechanisms of Heat Sensing by Nociceptive Vanilloid Receptors
伤害性香草素受体的热感应机制
基本信息
- 批准号:9973924
- 负责人:
- 金额:$ 39.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAfferent NeuronsAgonistAmericanAnalgesicsAnkyrin RepeatCalorimetryCaringCollectionCouplingDetectionDevelopmentDiabetes MellitusDifferential Scanning CalorimetryDiscriminationElectrophysiology (science)EnvironmentEquilibriumEsthesiaExhibitsGoalsHeart DiseasesHeatingHigh temperature of physical objectHomologous GeneHyperalgesiaIon ChannelIon Channel GatingKineticsKnowledgeLasersLinkLiposomesMalignant NeoplasmsMeasurementMediatingMedicalMedicineMembrane FluidityMethodologyModalityModelingMolecularMutagenesisNociceptionPainPathway interactionsPeripheralPropertyProteinsRampSiteSpecificityStimulusTRP channelTRPV1 geneTemperatureTemperature SenseTestingTherapeutic InterventionThermodynamicsTimeTreatment EfficacyUncertaintyVariantbiophysical modelcapsaicin receptorcofactordesignenthalpyexperimental studyfield studyimprovedkeratinocytenovelopioid epidemicpain reliefpain signalpatch clampreconstitutionresponsesensorside effecttheoriestherapeutic targettoolvoltage
项目摘要
Pain is among the most common reasons people seek medical care, yet the treatment options are limited, and
the current opioid epidemic especially highlights the urgent need of new safe and effective therapeutics.
Thermal TRP channels are a group of temperature sensitive ion channels recently discovered in peripheral
sensory neurons and keratinocytes where they mediate the first step of thermal sensation and nociception, and
have emerged as attractive targets for creation of novel analgesics. The goal of this proposal is to fully
characterize thermal sensing in these channels and distinguish it from agonist sensing in the same protein.
Current studies of the channels rely on patch clamp which is limited to detection of pore opening, while
properties of stimulus sensing, which is allosterically linked to gating, can only be inferred from influences on
gating. Moreover, patch responses, commonly resolved with slow temperature ramps, are analyzed assuming
equilibrium gating that recent studies indicate is not valid. These fundamental limitations cause an uncertainty
about temperature sensitivity of channels and interpretations of mechanisms and mutagenesis results.
This application will expand the span of the studies with a new methodology of calorimetry to directly probe
temperature sensing in channels and a unique laser heating approach to time-resolve temperature activation.
These novel tools will allow us to separate sensing and gating and tackle non-equilibrium dynamics and thus
enable an in-depth mechanistic analysis of channels. We will exploit these approaches, in conjunction with
biophysical modeling and functional reconstitution of purified proteins in liposomes, to address the central
question of how these channels obtain their strong temperature sensitivity. Our Aim 1 will exploit calorimetry to
directly detect thermal transitions of heat sensing in reconstituted TRPV1, a prototypical heat-sensitive TRP
channel, and will combine that measurement with patch recordings to derive a complete and rigorous analysis
of heat sensitivity of the channel. Aim 2 will combine electrophysiology and calorimetry with mutagenesis to
determine whether there are subdomains of the channel protein that dictate the energetics of heat sensing and
are thus acting like heat sensors. Aim 3 will address the polymodal TRPV1 activation mechanisms by testing
several prominent models that are difficult to differentiate by patch clamp alone. The experiments will elucidate
whether heat sensitivity is localized within the channel and fundamentally separable from agonists and other
stimuli. Overall, the application will transform our ability to study thermal channels, and the findings can guide
the design of analgesics with specificity to particular stimuli.
疼痛是人们寻求医疗服务的最常见原因之一,但是治疗方案有限,并且
当前的阿片类药物流行尤其强调了对新的安全有效治疗的迫切需要。
热TRP通道是最近在周围发现的一组温度敏感离子通道
感觉神经元和角质形成细胞介导热感觉和伤害感受的第一步,以及
已经成为创造新型镇痛药的有吸引力的目标。该提议的目的是完全
表征这些通道中的热传感,并将其与同一蛋白质中的激动剂传感区分开。
当前对通道的研究依赖于斑块夹,该贴片夹有限于检测孔口的检测,而
刺激传感的特性与门控相关,只能从对影响的影响中推断出来
门控。此外,假设贴片响应通常通过缓慢的温度坡道解决,假设
均衡门控最近的研究表明是无效的。这些基本限制会导致不确定性
关于通道的温度敏感性以及机制和诱变的解释。
该应用程序将通过新的量热法扩展研究跨度,以直接探测
通道中的温度传感和独特的激光加热方法,以固定温度激活。
这些新颖的工具将使我们能够分开传感,门控和应对非平衡动力学,从而将
启用对通道的深入机理分析。我们将与这些方法相结合来利用这些方法
脂质体中纯化蛋白的生物物理建模和功能重构,以解决中心
这些通道如何获得强度敏感性的问题。我们的目标1将把量热法利用为
直接检测在重组的TRPV1中热传感的热转变,这是一种典型的热敏感TRP
渠道,并将该测量与贴片记录相结合,以得出完整而严格的分析
通道的热敏感性。 AIM 2将将电生理学和量热法与诱变相结合至
确定是否存在通道蛋白的子域,决定了热感应的能量学和
因此,表现像热传感器。 AIM 3将通过测试来解决多聚TRPV1激活机制
单独使用贴片夹很难区分的几个突出模型。实验将阐明
热敏感性是否位于通道内,从根本上可以与激动剂和其他
刺激。总体而言,应用程序将改变我们研究热通道的能力,发现可以指导
对特定刺激的镇痛药的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FENG QIN其他文献
FENG QIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FENG QIN', 18)}}的其他基金
Mechanisms of Heat Sensing by Nociceptive Vanilloid Receptors
伤害性香草素受体的热感应机制
- 批准号:
10334523 - 财政年份:2020
- 资助金额:
$ 39.07万 - 项目类别:
Mechanisms of Heat Sensing by Nociceptive Vanilloid Receptors
伤害性香草素受体的热感应机制
- 批准号:
10581558 - 财政年份:2020
- 资助金额:
$ 39.07万 - 项目类别:
Temperature-Dependent Gating of Vanilloid Receptors
香草酸受体的温度依赖性门控
- 批准号:
8880531 - 财政年份:2014
- 资助金额:
$ 39.07万 - 项目类别:
Temperature-Dependent Gating of Vanilloid Receptors
香草酸受体的温度依赖性门控
- 批准号:
8642659 - 财政年份:2013
- 资助金额:
$ 39.07万 - 项目类别:
Temperature-Dependent Gating of Vanilloid Receptors
香草酸受体的温度依赖性门控
- 批准号:
8421285 - 财政年份:2013
- 资助金额:
$ 39.07万 - 项目类别:
Temperature-Dependent Gating of Vanilloid Receptors
香草酸受体的温度依赖性门控
- 批准号:
8813597 - 财政年份:2013
- 资助金额:
$ 39.07万 - 项目类别:
Mechanisms of Heat Activation and Multimodal Functions of VR1 Receptor Channels
VR1受体通道的热激活机制和多模态功能
- 批准号:
8073878 - 财政年份:2010
- 资助金额:
$ 39.07万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 39.07万 - 项目类别:
Intra-Articular Drug Delivery Modulating Immune Cells in Inflammatory Joint Disease
关节内药物递送调节炎症性关节疾病中的免疫细胞
- 批准号:
10856753 - 财政年份:2023
- 资助金额:
$ 39.07万 - 项目类别:
Isoform- and Sex-Specific Functions of CGRP in Gastrointestinal Motility
CGRP 在胃肠动力中的亚型和性别特异性功能
- 批准号:
10635765 - 财政年份:2023
- 资助金额:
$ 39.07万 - 项目类别:
Neuroimmune interactions for laryngeal sensorimotor neuropathy in postviral influenza infection
病毒性流感感染后喉部感觉运动神经病变的神经免疫相互作用
- 批准号:
10827254 - 财政年份:2023
- 资助金额:
$ 39.07万 - 项目类别: