Development of Germplasm Resources for Preservation of Aquatic Models

水生模型保存种质资源开发

基本信息

项目摘要

Zebrafish (Danio rerio) is a powerful model in biomedical research and laboratories around the world have produced tens of thousands of mutant and transgenic lines. Maintaining these valuable genotypes as live fish is expensive, risky, and beyond the capacity of stock centers. As such, cryopreservation has become a necessity and most of these genetic resources are now maintained as samples of inconsistent quality frozen with rudimentary techniques. Quality control has not been practiced in any systematic way, reproducibility is poor, and protocols are not standardized. It is common to have problems and failures in fertilization resulting in lost lines that need to be recreated, causing facilities to waste considerable time and effort. This is largely due to the false notion that neglecting quality control saves time and money. However, rather than being reduced, these costs are shifted downstream through wasted storage space and reduced fertilization. This pervasive lack of quality control has placed the substantial investments in biomedical research at great risk. Therefore, our long-term goal is to provide inexpensive, universally available and systematic quality control leading to development of community-based standards for cryopreservation. This will enable reliable contributions from individual laboratories to large comprehensive repositories providing protection for genetic resources pivotal in biomedical research. To achieve this, we propose to improve reliability and efficiency by providing routine access to reproducibility and standardization through continued development of microfabricated (“laboratory on a chip”) and 3-dimensional (3-D) printed devices encompassing all process steps from sample collection through fertilization. The Specific Aims are to: 1) Develop and test microfabricated devices that can be used by research laboratories at low effort and cost to improve assessment and study of sperm concentration and motility with respect to the effects of these factors on reproducibility and the overall success of cryopreservation. 2) Develop and test 3-D printed devices that can be used to improve the reproducibility of the freezing process. These devices will address conventional cryopreservation and vitrification, and be useful for single samples and pooled batches. 3) Perform biological testing of these devices to refine design and function and improve the reproducibility of quality assessment to enable research laboratories to back up lines or submit them to stock centers and germplasm repositories. This will provide a community-based approach for protection of genetic resources through systematic incorporation of devices, guidelines and standards applicable across a full range of activity scopes and scales.
斑马鱼(Danio rerio)是生物医学研究和实验室的强大模型。 世界已经产生了数以万计的突变体和转基因品系。维护这些 活鱼等有价值的基因型价格昂贵、风险较大,而且超出了养殖中心的承受能力。作为 因此,冷冻保存已成为一种必要,并且大多数遗传资源现在都已被保存。 使用基本技术冷冻保存质量不稳定的样品。质量 尚未以任何系统的方式进行控制,重现性差,并且协议尚未完成 没有标准化。受精过程中出现问题和失败导致线路丢失是很常见的 需要重新创建,导致设施浪费大量时间和精力。这很大程度上是 由于忽视质量控制可以节省时间和金钱的错误观念。然而,相反 这些成本并没有减少,而是通过浪费的存储空间向下游转移, 减少施肥。这种普遍缺乏质量控制的现象导致 生物医学研究的投资面临着巨大的风险。因此,我们的长期目标是提供 廉价、普遍可用和系统的质量控制导致开发 基于社区的冷冻保存标准。这将使可靠的贡献成为可能 单个实验室到大型综合存储库,为基因提供保护 生物医学研究中至关重要的资源。为了实现这一目标,我们建议提高可靠性和 通过持续提供重复性和标准化的常规访问来提高效率 微加工(“芯片实验室”)和 3 维 (3-D) 打印设备的开发 涵盖从样本采集到受精的所有过程步骤。具体目标 目的是: 1) 开发和测试可供研究实验室使用的微加工设备 改进精子浓度和活力的评估和研究的工作量和成本较低 考虑到这些因素对再现性和整体成功的影响 冷冻保存。 2)开发和测试可用于改进的3D打印设备 冷冻过程的再现性。这些设备将解决传统的 冷冻保存和玻璃化,适用于单个样品和混合批次。 3) 对这些设备进行生物测试,以完善设计和功能并改进 质量评估的可重复性,使研究实验室能够支持生产线或提交 将它们移至库存中心和种质资源库。这将提供一个基于社区的 通过系统整合装置来保护遗传资源的方法, 适用于各种活动范围和规模的指南和标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HARVEY D. BLACKBURN其他文献

HARVEY D. BLACKBURN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HARVEY D. BLACKBURN', 18)}}的其他基金

Development of Germplasm Resources for Preservation of Aquatic Models
水生模型保存种质资源开发
  • 批准号:
    10457071
  • 财政年份:
    2007
  • 资助金额:
    $ 48.61万
  • 项目类别:
Development of Germplasm Resources for Preservation of Aquatic Models
水生模型保存种质资源开发
  • 批准号:
    10197245
  • 财政年份:
    2007
  • 资助金额:
    $ 48.61万
  • 项目类别:

相似海外基金

Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
  • 批准号:
    22K13777
  • 财政年份:
    2022
  • 资助金额:
    $ 48.61万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
  • 批准号:
    10045111
  • 财政年份:
    2022
  • 资助金额:
    $ 48.61万
  • 项目类别:
    Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
  • 批准号:
    2749141
  • 财政年份:
    2022
  • 资助金额:
    $ 48.61万
  • 项目类别:
    Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 48.61万
  • 项目类别:
    College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 48.61万
  • 项目类别:
    College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
  • 批准号:
    10801667
  • 财政年份:
    2019
  • 资助金额:
    $ 48.61万
  • 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1738138
  • 财政年份:
    2017
  • 资助金额:
    $ 48.61万
  • 项目类别:
    Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
  • 批准号:
    17K18852
  • 财政年份:
    2017
  • 资助金额:
    $ 48.61万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
  • 批准号:
    1612567
  • 财政年份:
    2016
  • 资助金额:
    $ 48.61万
  • 项目类别:
    Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1621732
  • 财政年份:
    2016
  • 资助金额:
    $ 48.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了