Cognitive Heterogeneity in those with high Alzheimer's Disease Risk
阿尔茨海默病高风险人群的认知异质性
基本信息
- 批准号:9975371
- 负责人:
- 金额:$ 153.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AgeAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease riskAlzheimer’s disease biomarkerAmyloidAmyloid beta-ProteinApolipoprotein EBlood VesselsBrainBrain imagingClinicalCognitionCognitiveCognitive agingCollectionCommunitiesDataDatabasesDementiaDetectionDiagnosisDiseaseElderlyFemaleFramingham Heart StudyFutureGenerationsGenotypeGoalsHealthHeterogeneityHippocampus (Brain)ImageImpaired cognitionIndividualInterventionLearningLinkMRI ScansMachine LearningMagnetic Resonance ImagingMasksMeasurementMeasuresMemory LossMethodsModelingNational Institute on AgingNerve DegenerationNeuropsychologyNoiseParticipantPathologyPerformancePlasmaPositron-Emission TomographyReportingResearch PriorityResourcesRiskRisk FactorsStructureSubgroupSymptomsTimeUpdateWhite Matter HyperintensityWorkapolipoprotein E-4basecardiovascular risk factorcerebral atrophycognitive abilitycognitive performancecohortcomorbiditycritical perioddigitaldisorder riskeffective therapyhigh riskhigh risk populationhippocampal atrophyimaging biomarkerimprovedin vivoindexinglongitudinal databasemachine learning methodmagnetic resonance imaging biomarkernetwork modelsneuroimagingneuroimaging markernovelpre-clinicalprognosticprospectiveresponsesextau Proteinsvirtual
项目摘要
The lack of an effective treatment for Alzheimer's disease (AD) has led to a call to detect the disease earlier in
its course but AD's insidious onset that can span many years, adds complexity to doing so. As a result, the
National Institute on Aging (NIA) has identified to understand the heterogeneity of AD, particularly at the
asymptomatic stages as a research priority. While there are well-documented high AD risk factors (e.g., age,
apolipoprotein E4, cardiovascular risk, amyloid and tau pathology), diagnosis is not inevitable, but it remains
unknown why only some of those with high AD risk progress to disease and others do not. We contend that
one challenge for answering this question is that by the time traditional AD preclinical symptoms of memory
decline and/or hippocampal atrophy emerge, the neurodegenerative trajectory is already on a near irreversible
course. We further hypothesize that traditional measurement methods produce crude measures that mask the
broader range of clinical expression in the preclinical period and preclude the earliest opportunity to detect the
beginning of the neurodegenerative trajectory. In this updated application, we seek to leverage the
Framingham Heart Study (FHS) cognitive aging and dementia database, acquired through nearly 7 decades of
prospective examination. Unique to FHS since 2005 has been the collection of novel NP indices (error
responses, digital metrics such as item-level latencies, fragmented responses). Baseline data were collected at
a time when the vast majority of these participants appeared asymptomatic, including those who are at high
AD risk, a subset of which have since progressed to incident AD as well as similarly high AD risk subgroups
who did not. Through a one year R56, we provide new preliminary data in support of our aims to 1)
characterize the cognitive heterogeneity of these high AD risk groups as they do and do not progress to
disease, 2) determine whether traditional neuroimaging biomarkers differentiate between progressors and non-
progressors and 3) develop novel machine learning methods to identify neuroimaging indices even earlier than
traditional MRI measures. We predict that with additional analyses we will identify unique cognitive profiles that
better differentiate those at high AD risk who do and do not progress to AD, that the NP profiles of high AD risk
progressors will be associated with AD neuroimaging markers (e.g. decline in total brain and hippocampal
volume, increase in white matter hyperintensities) while the NP profiles of high AD risk non-progressors will not
show similar evidence of brain structure changes. We will further build on our preliminary work of developing
an adversarial learning framework to enhance baseline MRI images to serve as better predictors of high AD
risk progressor and non-progressor groups than the original images. Results will lead to identification of a
broader spectrum of preclinical presentation in those with high AD risk than has been previously recognized
and thus better characterize the heterogeneity of NP performance, particularly earlier in the disease course,
potentially identifying a critical period in which intervention strategies can mitigate disease risk.
由于阿尔茨海默病(AD)缺乏有效的治疗方法,导致人们呼吁早些时候发现这种疾病
它的过程,但AD的隐匿性发病可能跨越多年,增加了这一点的复杂性。因此,
国家老龄研究所(NIA)已确定了解AD的异质性,特别是在
将无症状期作为研究重点。虽然有充分记录的高AD风险因素(例如,年龄,
载脂蛋白E4,心血管风险,淀粉样蛋白和tau病理),诊断不是不可避免的,但它仍然
不知道为什么只有一些AD风险高的人会进展为疾病,而其他人则不会。我们认为
回答这个问题的一个挑战是,当传统的阿尔茨海默病临床前症状记忆
下降和/或出现海马区萎缩,神经退行性变化的轨迹已经近乎不可逆转
当然了。我们进一步假设,传统的测量方法产生的粗略测量掩盖了
临床前期的临床表现范围更广,排除了最早检测到
神经退化轨迹的开始。在此更新的应用程序中,我们寻求利用
弗雷明翰心脏研究(FHS)认知老化和痴呆症数据库,通过近70年的
前瞻性考试。自2005年以来,FHS唯一的是收集新的NP指数(错误
回复、数字指标,如项目级延迟、碎片化回复)。基准数据收集于
当时,这些参与者中的绝大多数似乎没有症状,包括那些处于兴奋状态的人
AD风险,其子集已发展为事件AD以及类似高AD风险子组
谁没有呢。通过一年的R56,我们提供新的初步数据来支持我们的目标1)
描述这些AD高危人群的认知异质性,因为他们已经和不会进展到
疾病,2)确定传统的神经成像生物标记物是否区分进展者和非进展者
和3)开发新的机器学习方法来识别神经成像指标,甚至比
传统的MRI检查方法。我们预测,通过额外的分析,我们将识别出独特的认知特征,
更好地区分高AD风险人群,谁进展为AD,谁不进展为AD,高AD风险的NP特征
进展者将与阿尔茨海默病的神经成像标志物(例如,全脑和海马体的下降)相关
体积,白质高信号增加),而高危AD非进展者的NP谱不会
显示出类似的大脑结构变化的证据。我们将在前期工作的基础上,进一步发展
增强基线MRI图像以更好地预测高AD的对抗性学习框架
风险进展者和非进展者组比原始图像。结果将导致识别一种
阿尔茨海默病高风险人群的临床前表现比以前认识到的更广泛
从而更好地表征NP表现的异质性,特别是在疾病过程的早期,
潜在地确定干预策略可以降低疾病风险的关键时期。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rhoda Au其他文献
Rhoda Au的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rhoda Au', 18)}}的其他基金
Precision Brain Health Monitoring for Alzheimer's Disease Risk Detection in the Framingham Study
弗雷明汉研究中用于阿尔茨海默病风险检测的精确大脑健康监测
- 批准号:
10625625 - 财政年份:2021
- 资助金额:
$ 153.27万 - 项目类别:
Precision Brain Health Monitoring for Alzheimer's Disease Risk Detection in the Framingham Study: Black & AA Recruitment Supplement
弗雷明汉研究中用于阿尔茨海默病风险检测的精确大脑健康监测:黑人
- 批准号:
10786286 - 财政年份:2021
- 资助金额:
$ 153.27万 - 项目类别:
Precision Brain Health Monitoring for Alzheimer's Disease Risk Detection in the Framingham Study
弗雷明汉研究中用于阿尔茨海默病风险检测的精确大脑健康监测
- 批准号:
10214162 - 财政年份:2021
- 资助金额:
$ 153.27万 - 项目类别:
Precision Monitoring and Assessment in the Framingham Study: Cognitive, MRI, Genetic and Biomarker Precursors of AD & Dementia
弗雷明汉研究中的精确监测和评估:AD 的认知、MRI、遗传和生物标志物前体
- 批准号:
10670318 - 财政年份:2020
- 资助金额:
$ 153.27万 - 项目类别:
Precision Monitoring and Assessment in the Framingham Study: Cognitive, MRI, Genetic and Biomarker Precursors of AD & Dementia
弗雷明汉研究中的精确监测和评估:AD 的认知、MRI、遗传和生物标志物前体
- 批准号:
10468279 - 财政年份:2020
- 资助金额:
$ 153.27万 - 项目类别:
Cognitive Heterogeneity in those with high Alzheimer's Disease Risk
阿尔茨海默病高风险人群的认知异质性
- 批准号:
10404703 - 财政年份:2020
- 资助金额:
$ 153.27万 - 项目类别:
Precision Monitoring and Assessment in the Framingham Study: Cognitive, MRI, Genetic and Biomarker Precursors of AD & Dementia
弗雷明汉研究中的精确监测和评估:AD 的认知、MRI、遗传和生物标志物前体
- 批准号:
10256768 - 财政年份:2020
- 资助金额:
$ 153.27万 - 项目类别:














{{item.name}}会员




