Cognitive Heterogeneity in those with high Alzheimer's Disease Risk

阿尔茨海默病高风险人群的认知异质性

基本信息

  • 批准号:
    9975371
  • 负责人:
  • 金额:
    $ 153.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-01 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

The lack of an effective treatment for Alzheimer's disease (AD) has led to a call to detect the disease earlier in its course but AD's insidious onset that can span many years, adds complexity to doing so. As a result, the National Institute on Aging (NIA) has identified to understand the heterogeneity of AD, particularly at the asymptomatic stages as a research priority. While there are well-documented high AD risk factors (e.g., age, apolipoprotein E4, cardiovascular risk, amyloid and tau pathology), diagnosis is not inevitable, but it remains unknown why only some of those with high AD risk progress to disease and others do not. We contend that one challenge for answering this question is that by the time traditional AD preclinical symptoms of memory decline and/or hippocampal atrophy emerge, the neurodegenerative trajectory is already on a near irreversible course. We further hypothesize that traditional measurement methods produce crude measures that mask the broader range of clinical expression in the preclinical period and preclude the earliest opportunity to detect the beginning of the neurodegenerative trajectory. In this updated application, we seek to leverage the Framingham Heart Study (FHS) cognitive aging and dementia database, acquired through nearly 7 decades of prospective examination. Unique to FHS since 2005 has been the collection of novel NP indices (error responses, digital metrics such as item-level latencies, fragmented responses). Baseline data were collected at a time when the vast majority of these participants appeared asymptomatic, including those who are at high AD risk, a subset of which have since progressed to incident AD as well as similarly high AD risk subgroups who did not. Through a one year R56, we provide new preliminary data in support of our aims to 1) characterize the cognitive heterogeneity of these high AD risk groups as they do and do not progress to disease, 2) determine whether traditional neuroimaging biomarkers differentiate between progressors and non- progressors and 3) develop novel machine learning methods to identify neuroimaging indices even earlier than traditional MRI measures. We predict that with additional analyses we will identify unique cognitive profiles that better differentiate those at high AD risk who do and do not progress to AD, that the NP profiles of high AD risk progressors will be associated with AD neuroimaging markers (e.g. decline in total brain and hippocampal volume, increase in white matter hyperintensities) while the NP profiles of high AD risk non-progressors will not show similar evidence of brain structure changes. We will further build on our preliminary work of developing an adversarial learning framework to enhance baseline MRI images to serve as better predictors of high AD risk progressor and non-progressor groups than the original images. Results will lead to identification of a broader spectrum of preclinical presentation in those with high AD risk than has been previously recognized and thus better characterize the heterogeneity of NP performance, particularly earlier in the disease course, potentially identifying a critical period in which intervention strategies can mitigate disease risk.
由于阿尔茨海默病(AD)缺乏有效的治疗方法,人们呼吁尽早发现这种疾病

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rhoda Au其他文献

Rhoda Au的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rhoda Au', 18)}}的其他基金

Precision Brain Health Monitoring for Alzheimer's Disease Risk Detection in the Framingham Study
弗雷明汉研究中用于阿尔茨海默病风险检测的精确大脑健康监测
  • 批准号:
    10625625
  • 财政年份:
    2021
  • 资助金额:
    $ 153.27万
  • 项目类别:
Precision Brain Health Monitoring for Alzheimer's Disease Risk Detection in the Framingham Study: Black & AA Recruitment Supplement
弗雷明汉研究中用于阿尔茨海默病风险检测的精确大脑健康监测:黑人
  • 批准号:
    10786286
  • 财政年份:
    2021
  • 资助金额:
    $ 153.27万
  • 项目类别:
Precision Brain Health Monitoring for Alzheimer's Disease Risk Detection in the Framingham Study
弗雷明汉研究中用于阿尔茨海默病风险检测的精确大脑健康监测
  • 批准号:
    10214162
  • 财政年份:
    2021
  • 资助金额:
    $ 153.27万
  • 项目类别:
Clinical Core
临床核心
  • 批准号:
    10670323
  • 财政年份:
    2020
  • 资助金额:
    $ 153.27万
  • 项目类别:
Precision Monitoring and Assessment in the Framingham Study: Cognitive, MRI, Genetic and Biomarker Precursors of AD & Dementia
弗雷明汉研究中的精确监测和评估:AD 的认知、MRI、遗传和生物标志物前体
  • 批准号:
    10670318
  • 财政年份:
    2020
  • 资助金额:
    $ 153.27万
  • 项目类别:
Precision Monitoring and Assessment in the Framingham Study: Cognitive, MRI, Genetic and Biomarker Precursors of AD & Dementia
弗雷明汉研究中的精确监测和评估:AD 的认知、MRI、遗传和生物标志物前体
  • 批准号:
    10468279
  • 财政年份:
    2020
  • 资助金额:
    $ 153.27万
  • 项目类别:
Cognitive Heterogeneity in those with high Alzheimer's Disease Risk
阿尔茨海默病高风险人群的认知异质性
  • 批准号:
    10404703
  • 财政年份:
    2020
  • 资助金额:
    $ 153.27万
  • 项目类别:
Clinical Core
临床核心
  • 批准号:
    10256770
  • 财政年份:
    2020
  • 资助金额:
    $ 153.27万
  • 项目类别:
Precision Monitoring and Assessment in the Framingham Study: Cognitive, MRI, Genetic and Biomarker Precursors of AD & Dementia
弗雷明汉研究中的精确监测和评估:AD 的认知、MRI、遗传和生物标志物前体
  • 批准号:
    10256768
  • 财政年份:
    2020
  • 资助金额:
    $ 153.27万
  • 项目类别:
Clinical Core
临床核心
  • 批准号:
    10047355
  • 财政年份:
    2020
  • 资助金额:
    $ 153.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了