Large-scale, neuronal ensemble recordings in motor cortex of the behaving marmoset
行为狨猴运动皮层的大规模神经元整体记录
基本信息
- 批准号:10083242
- 负责人:
- 金额:$ 57.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAnimalsArchitectureAreaBehaviorBehavioralCalciumCallithrixCallithrix jacchus jacchusChronicCodeComplementCortical ColumnDataDevelopmentElectrodesElectrophysiology (science)EventExposure toFluoroscopyForelimbGenerationsGoalsGryllidaeHandHeadHourHumanImageImaging technologyLeadLearningLinear ModelsMapsMeasuresMethodsMicroelectrodesMicroscopeModelingMonkeysMotorMotor CortexMotor SkillsMovementMusNatureNeuronsOperant ConditioningPatternPerformancePopulationPrimatesPropertyReproductionResearchResolutionRoentgen RaysSensorySpecific qualifier valueStructureSynapsesSynaptic plasticitySystemTechnologyTenebrioTimeTrainingUpper ExtremityUpper limb movementWireless Technologyarmarm movementbasebrain machine interfacecraniumdensityfluorescence imagingfluorescence microscopeimprovedinterestkinematicslensmotor behaviormotor learningmulti-electrode arraysneocorticalnetwork architecturenetwork modelsneural prosthesisoptical imagingpredicting responserelating to nervous systemresponsesimulationskill acquisitionspatiotemporalstatistics
项目摘要
Abstract
This project seeks to characterize the spatio-temporal organization of motor cortical (M1) activity at multiple
spatial scales associated with upper limb movements of unrestrained marmoset monkeys performing
ethological behaviors. The project has two goals: 1) To statistically evaluate the nature and stability of single
neuron and ensemble-level motor representations in M1 at the columnar and areal spatial scales, and 2) To
use our experimental data to develop a network model of a 3D patch of M1 capable of generating
experimentally testable predictions about the movement representations in M1. We will combine two
complementary technologies for large-scale neural recording: 1) wireless, high density multi-electrode arrays
and 2) calcium fluorescence imaging - while common marmoset monkeys (Callithrix jacchus) perform
naturalistic foraging behaviors. Advances in microelectrode array technology have permitted simultaneous
electrophysiological recordings from hundreds of neurons in behaving animals. However, given the large inter-
electrode distance (>=400 microns), much of the microcircuit activity at the subcolumnar level is unresolved. In
contrast, calcium fluorescence imaging provides the opportunity to densely and simultaneously record the
spiking activity of hundreds of neurons within a single cortical column. This dense, large-scale imaging allows
for the resolution of neurons immediately adjacent to one another which increases the likelihood that they are
synaptically connected. We will use a miniature fluorescence microscope attached to the skull which allows for
head-free, unconstrained movements of the arm and hand. Moreover, by adding a prism lens to the
microscope, we will be able to image neurons across lamina from layer 2/3 through layer 5. Using both
technologies, we will characterize single neuron encoding properties, network dynamics, and functional
connectivity within and between cortical columns. By bridging spatial scales, we will be able to interpolate
between the cortical microcircuit level and the level of a whole cortical area. We will also investigate how the
spatio-temporal organization of movement coding changes with motor skill acquisition. A unique and important
feature of this project will be the use of natural and unconstrained foraging tasks that involve prey capture
which will not require operant conditioning and will provide richer behaviors in order to build more accurate
encoding models. We will also build large-scale network simulations of a patch of motor cortex constrained by
the recorded data to understand how connectivity relates to tuning properties of single neurons. The model will
then allow us to investigate what synaptic rules result in the observed changes in spatiotemporal patterning
associated with motor learning. Ultimately, the principles of network dynamics, computation, and encoding
deduced from the motor cortex may apply more generally to other neocortical areas. This research may also
have applied relevance to brain-machine interface technology.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicolas Brunel其他文献
Nicolas Brunel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicolas Brunel', 18)}}的其他基金
Canonical computations for motor learning by the cerebellar cortex micro-circuit
小脑皮层微电路运动学习的规范计算
- 批准号:
9814049 - 财政年份:2019
- 资助金额:
$ 57.97万 - 项目类别:
Canonical computations for motor learning by the cerebellar cortex micro-circuit
小脑皮层微电路运动学习的规范计算
- 批准号:
10155611 - 财政年份:2019
- 资助金额:
$ 57.97万 - 项目类别:
Canonical computations for motor learning by the cerebellar cortex micro-circuit
小脑皮层微电路运动学习的规范计算
- 批准号:
10614484 - 财政年份:2019
- 资助金额:
$ 57.97万 - 项目类别:
Canonical computations for motor learning by the cerebellar cortex micro-circuit
小脑皮层微电路运动学习的规范计算
- 批准号:
9976609 - 财政年份:2019
- 资助金额:
$ 57.97万 - 项目类别:
Canonical computations for motor learning by the cerebellar cortex micro-circuit
小脑皮层微电路运动学习的规范计算
- 批准号:
10397037 - 财政年份:2019
- 资助金额:
$ 57.97万 - 项目类别:
Large-scale, neuronal ensemble recordings in motor cortex of the behaving marmoset
行为狨猴运动皮层的大规模神经元整体记录
- 批准号:
10321250 - 财政年份:2018
- 资助金额:
$ 57.97万 - 项目类别:
Circuitry underlying response summation in mouse and primate: Theory and experiment
小鼠和灵长类动物响应总和的电路:理论与实验
- 批准号:
9792300 - 财政年份:2018
- 资助金额:
$ 57.97万 - 项目类别:
Circuitry underlying response summation in mouse and primate: Theory and experiment
小鼠和灵长类动物响应总和的电路:理论与实验
- 批准号:
9975922 - 财政年份:2018
- 资助金额:
$ 57.97万 - 项目类别:
Learning spatio-temporal statistics from the environment in recurrent networks
从循环网络中的环境中学习时空统计数据
- 批准号:
9170047 - 财政年份:2016
- 资助金额:
$ 57.97万 - 项目类别:
相似海外基金
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2019
- 资助金额:
$ 57.97万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2018
- 资助金额:
$ 57.97万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2017
- 资助金额:
$ 57.97万 - 项目类别:
Discovery Grants Program - Individual
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2016
- 资助金额:
$ 57.97万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2015
- 资助金额:
$ 57.97万 - 项目类别:
Collaborative Research and Development Grants
Algorithms to generate designs of potency experiments that use far fewer animals
生成使用更少动物的效力实验设计的算法
- 批准号:
8810865 - 财政年份:2015
- 资助金额:
$ 57.97万 - 项目类别:
Reconstruction algorithms for time-domain diffuse optical tomography imaging of small animals
小动物时域漫射光学断层成像重建算法
- 批准号:
RGPIN-2015-05926 - 财政年份:2015
- 资助金额:
$ 57.97万 - 项目类别:
Discovery Grants Program - Individual
Event detection algorithms in decision support for animals health surveillance
动物健康监测决策支持中的事件检测算法
- 批准号:
385453-2009 - 财政年份:2013
- 资助金额:
$ 57.97万 - 项目类别:
Collaborative Research and Development Grants
Development of population-level algorithms for modelling genomic variation and its impact on cellular function in animals and plants
开发群体水平算法来建模基因组变异及其对动植物细胞功能的影响
- 批准号:
FT110100972 - 财政年份:2012
- 资助金额:
$ 57.97万 - 项目类别:
ARC Future Fellowships
Advanced computational algorithms for brain imaging studies of freely moving animals
用于自由活动动物脑成像研究的先进计算算法
- 批准号:
DP120103813 - 财政年份:2012
- 资助金额:
$ 57.97万 - 项目类别:
Discovery Projects