Cadherin Mechanotransduction
钙粘蛋白机械传导
基本信息
- 批准号:9976560
- 负责人:
- 金额:$ 32.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-05 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcinus organ componentActinsAdhesionsBackBindingBiophysicsBioreactorsBreast Epithelial CellsCadherin DomainCadherinsCell ProliferationCell ShapeCell membraneCellsCellular StressCollaborationsComplexCouplesCouplingDataDependenceDevelopmentDiseaseE-CadherinEGF geneEpidermal Growth Factor ReceptorEpithelialEpithelial Cell JunctionEpithelial CellsEpitheliumFeedbackFluorescenceFluorescence Resonance Energy TransferGoalsGrantIntegrinsIntercellular JunctionsMAP Kinase GeneMalignant NeoplasmsMammary Gland ParenchymaMammary glandMeasurementMechanical StimulationMechanicsMediatingMethodologyMitogen-Activated Protein KinasesMolecularMorphogenesisMutationPathway interactionsPhosphorylationPhosphotransferasesPhysiologicalProteinsPsychological reinforcementReceptor SignalingRoleSignal PathwaySignal TransductionStructureTestingTissuesTransducersbasebiophysical analysiscellular engineeringcohesiondimerhuman modelinnovationmammary epitheliummechanical forcemechanotransductionmigrationmonomermutantnovelprogramsreceptor bindingresponserhothree dimensional cell culturetissue culturetumor progressiontwo-dimensional
项目摘要
This grant builds on our novel discovery that E-cadherin at epithelial cell-cell junctions transduces mechanical
signals, by activating a kinase cascade via the epidermal growth factor receptor (EGFR). E-cadherin is an
essential adhesion protein at epithelial cell-cell junctions, and E-cadherin complexes also transduce force, to
regulate cell shape and epithelial barrier integrity. These new findings suggest that E-cadherin force-
transduction also activates signals that regulate cell proliferation, morphogenesis, and disease. The broad goal
of this program is to identify initial steps in the mechanical activation of EGFR by E-cadherin, and to establish
the broader physiological implications of this mechanism. Our preliminary data also demonstrate that this
force-activated signaling pathway regulates the cytoskeletal reinforcement of stressed cell-cell junctions by
α−catenin in E-cadherin complexes. This unexpected finding supports the hypothesis that EGFR and E-
cadherin are essential components in the core force-transduction machinery at epithelial cell junctions. In this
program, Specific Aim 1 tests the hypothesis that mechanically stimulated E-cadherin activates EGFR
phosphorylation, by triggering the disruption of putative E-cadherin/EGFR complexes. Specific Aim 2 will use
innovative fluorescence-based methodology, developed by collaborator Hristova (Johns Hopkins) to
investigate direct interactions between E-cadherin and EGFR at the plasma membrane. Proposed studies are
based on substantial preliminary data, which reveal direct protein-protein association. Biophysical studies will
establish the molecular requirements for this association, using a subset of E-cadherin and EGFR mutants.
Specific Aim 3 will test the physiological implications of these findings in a three-dimensional, organotypic
model of human mammary epithelial tissue, in collaboration with Weaver (UCSF). Studies will determine
whether E-cadherin/EGFR complexes are indeed central force-sensing units that coordinate with integrins to
tune morphogenesis and malignancy, in response to tissue mechanics. 3D cultures of breast epithelial cells
engineered to express E-cadherin mutants (Aim 2) will determine the impact of E-cadherin/EGFR complex
disruption on proliferation, morphogenesis, and invasion, as a function of matrix rigidity. Integrins are well
known to coordinate with EGFR to regulate breast tissue development and tumor progression. These studies
would potentially establish E-cadherin as an essential component in this force-sensitive network.
这笔赠款建立在我们的新发现基础上,即E-钙粘附素在上皮细胞-细胞连接处传递机械信号
通过表皮生长因子受体(EGFR)激活激活级联信号。E-钙粘素是一种
上皮细胞-细胞连接处的基本黏附蛋白和E-钙粘附素复合体也转导力量,以
调节细胞形态和上皮屏障的完整性。这些新的发现表明,E-钙粘附素-
信号转导也激活了调控细胞增殖、形态发生和疾病的信号。总的目标是
该计划的目的是确定E-钙粘素机械激活EGFR的初始步骤,并建立
这一机制的更广泛的生理含义。我们的初步数据也表明这一点
力激活信号通路调节应激细胞-细胞连接的细胞骨架强化
E-钙粘附素复合体中的α−连接素。这一意想不到的发现支持了EGFR和E-
钙粘附素是上皮细胞连接的核心力转导机制的重要组成部分。在这
程序,特殊目标1测试机械刺激的E-钙粘素激活EGFR的假设
磷酸化,通过触发假定的E-钙粘素/EGFR复合体的破坏。《特定目标2》将使用
创新的基于荧光的方法学,由合作者赫里斯托娃(约翰斯·霍普金斯)开发
研究E-钙粘蛋白和EGFR在质膜上的直接相互作用。建议的研究包括
基于大量的初步数据,这些数据揭示了蛋白质之间的直接联系。生物物理学研究将
使用E-钙粘蛋白和EGFR突变体的子集,建立这种联系的分子要求。
《特殊目标3》将在一个三维的器官类型中测试这些发现的生理学意义。
人类乳腺上皮组织模型,与韦弗大学(UCSF)合作。研究将确定
E-钙粘蛋白/EGFR复合体是否真的是与整合素协调的中枢力敏感单位
调整形态发生和恶性程度,以响应组织力学。乳腺上皮细胞的三维培养
基因工程表达E-钙粘蛋白突变体(Aim 2)将决定E-钙粘蛋白/EGFR复合体的影响
破坏增殖、形态发生和侵袭,作为基质刚性的函数。整合素很好
已知与EGFR协调以调节乳房组织发育和肿瘤进展。这些研究
可能会使E-钙粘附素成为这个对力量敏感的网络中的一个重要组成部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Deborah E Leckband其他文献
Deborah E Leckband的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Deborah E Leckband', 18)}}的其他基金
Finding the right niche:quantifying protein folding stability in materials
找到合适的利基:量化材料中的蛋白质折叠稳定性
- 批准号:
9883022 - 财政年份:2019
- 资助金额:
$ 32.94万 - 项目类别:
Polarization and directed cell movements in engineered cellular environments
工程细胞环境中的极化和定向细胞运动
- 批准号:
7658655 - 财政年份:2009
- 资助金额:
$ 32.94万 - 项目类别:
Polarization and directed cell movements in engineered cellular environments
工程细胞环境中的极化和定向细胞运动
- 批准号:
7847479 - 财政年份:2009
- 资助金额:
$ 32.94万 - 项目类别:
LATERAL DIFFUSION OF ADHESION PROTEINS ON SUPPORTED BILAYERS
粘附蛋白在支撑双层上的横向扩散
- 批准号:
7600944 - 财政年份:2007
- 资助金额:
$ 32.94万 - 项目类别:














{{item.name}}会员




