Estimating assortative mating, its history, and its future effect on genetic variance for health, behavioral, and ancestry phenotypes using crosssectionaldata
使用横截面数据估计选型交配、其历史及其对健康、行为和祖先表型遗传变异的未来影响
基本信息
- 批准号:9977581
- 负责人:
- 金额:$ 25.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesBehavioralBiologicalBiologyBirthCharacteristicsChildChromosomesCorrelation StudiesDataData SetDiseaseElderlyEnvironmentFutureGenerationsGenesGeneticGenetic RiskGenomeHealthHeartHeritabilityIncidenceIndividualInheritedIntuitionLeadLightLinkMeasuresMethodsModernizationOutcomePaperParentsPartner in relationshipPast TrendsPathway interactionsPhenotypePlant RootsPlayPopulationPrevalencePropertyPublic HealthPublishingRecording of previous eventsResearchResearch PersonnelRetirementRoleSeverity of illnessShockSorting - Cell MovementSourceSpousesStratificationStudy SectionTestingTimeVariantWorkbehavioral healthbehavioral phenotypingbiobankcohortcomorbiditydisease phenotypedisorder riskexhaustionflexibilityhealth dataimprovednext generationsimulationtheoriestime usetooltraittrend
项目摘要
PROJECT SUMMARY/ABSTRACT
Assortative mating (AM) is when parents are more similar genetically than if pairing were random. AM can
lead to a greater prevalence and severity of disease in the population and can mislead researchers studying the
relationships between phenotypes. A key objective of this project is to precisely estimate how parents have
sorted over time to describe past and future trends in public health—and to show how to use those estimates to
take AM into account when trying to narrow down the search for the biological roots of diseases.
The key idea behind this project is that AM leads to the next generation having a larger variance of genetic
risk—measured by polygenic scores (PGSs)—than it otherwise would. Greater variance leads to a larger range
for the PGS and a greater incidence of extreme values. A key concern about AM is that for a disease PGS, a
greater incidence of extreme values associated with a larger variance will lead to a greater overall incidence and
a greater incidence of more severe forms of the disease. But that increase in variance also provides a valuable
tool to study AM. For example, if the variance of a PGS is changing in the population, we can use this information
to estimate how AM must also be changing. Genetic data on parent pairs is currently scarce—measuring in the
tens of thousands—while cross-sectional data on unrelated individuals is measured in millions.
This project is to develop and deploy approaches using cross-sectional data in unrelated individuals to study
the dynamics and average level of assortative mating for different individual diseases and traits and across pairs
of different diseases and traits. We will validate the results using data on spouse pairs. This project has three
specific aims:
1. Develop a general theoretical framework to understand how AM affects the variance and correlation
of PGSs across individuals. Importantly, AM can affect the distribution of genetic risk for many generations.
2. Use the theoretical framework to develop methods to estimate AM and its changes using data on
unrelated individuals. This will include studying AM for individual phenotypes and AM between pairs of
phenotypes. 3. Estimate the history of AM and cross-phenotype AM and study illustrative implications
for health and health research, including (a) forecasting the effect of changes in AM on future disease
incidence and future disease comorbidities, (b) parceling out the part of past trends in disease incidence and
comorbidities that can be accounted for by changes in AM, (c) sorting out what part of the typical level of spousal
similarity in disease risk is due to AM and what part is due to other forces, such as a common environment that
is generative of that disease, (d) sorting out what portion of the similarity between genes that predict a disease
and genes that predict another disease or trait is due to AM and therefore does not suggest a common biological
pathway, (e) correcting other crucial genetic measures for AM.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick Ansel Turley其他文献
Patrick Ansel Turley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick Ansel Turley', 18)}}的其他基金
Studying the Genetics of Aging, Behavioral, and Social Phenotypes in Diverse Populations
研究不同人群的衰老、行为和社会表型的遗传学
- 批准号:
10638152 - 财政年份:2023
- 资助金额:
$ 25.97万 - 项目类别:
Estimating assortative mating, its history, and its future effect on genetic variance for health, behavioral, and ancestry phenotypes using crosssectionaldata
使用横截面数据估计选型交配、其历史及其对健康、行为和祖先表型遗传变异的未来影响
- 批准号:
10153652 - 财政年份:2020
- 资助金额:
$ 25.97万 - 项目类别:
Genome-wide analysis of late-onset Alzheimer's disease using intergenerational, multi-trait, and cross-ancestry data
使用代际、多特征和跨血统数据对迟发性阿尔茨海默病进行全基因组分析
- 批准号:
10331595 - 财政年份:2019
- 资助金额:
$ 25.97万 - 项目类别:
Genome-wide analysis of late-onset Alzheimer's disease using intergenerational, multi-trait, and cross-ancestry data
使用代际、多特征和跨血统数据对迟发性阿尔茨海默病进行全基因组分析
- 批准号:
10611418 - 财政年份:2019
- 资助金额:
$ 25.97万 - 项目类别:
Genome-wide analysis of late-onset Alzheimer's disease using intergenerational, multi-trait, and cross-ancestry data
使用代际、多特征和跨血统数据对迟发性阿尔茨海默病进行全基因组分析
- 批准号:
10374952 - 财政年份:2019
- 资助金额:
$ 25.97万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 25.97万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 25.97万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 25.97万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 25.97万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 25.97万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 25.97万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 25.97万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 25.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 25.97万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 25.97万 - 项目类别:














{{item.name}}会员




