Toward optimizing digital mental health interventions: A clinical trial aimed at understanding what drives patient engagement.
优化数字心理健康干预措施:一项旨在了解推动患者参与的因素的临床试验。
基本信息
- 批准号:9977310
- 负责人:
- 金额:$ 18.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-09 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionAnxietyAreaAttitudeAutomobile DrivingCellular PhoneCharacteristicsClinic VisitsClinicalClinical DataClinical TrialsClinical Trials DesignClinical effectivenessCognitiveCollaborationsComputersCost of IllnessCosts and BenefitsCuesDataData ScienceDiseaseDistressDoseEffectivenessEvaluationFeedbackFoundationsFutureGoalsGrantHabitsHumanInternetInterventionIntervention StudiesInterviewInvestigational TherapiesLightLiteratureLogisticsMeasuresMental DepressionMental HealthMethodsModelingMotivationNotificationOutcomeOutcome MeasureParticipantPatient CarePatient Self-ReportPatientsPopulationPrimary Health CareProtocols documentationProviderPsychotherapyPublic HealthRandomizedResearchResearch PersonnelScientistSelf EfficacySeriesSystemTechnologyTestingTimeTouch sensationTrainingTransportationarmbasebehavior changebehavioral constructclinical implementationcomorbiditycostdesigndigitaldigital modelseffective therapyevidence baseexperiencefield studyimprovedinnovationmeetingsmobile applicationnovelpatient engagementprogramsprototypepsychosocialrecruitroutine caresocialsocial stigmatheoriestreatment adherencetrial designuser centered design
项目摘要
PROJECT SUMMARY
Depression and anxiety are highly comorbid and costly diseases. Evidence-based psychotherapy is the first-line
treatment but is underutilized and not scalable. Digital mental health interventions (DMHIs), delivered via the
internet and/or mobile apps, have evolved as efficacious and potentially scalable treatments. To date, however,
effectiveness in routine care is limited by insufficient patient engagement. In order to achieve the transformative
potential of DMHIs, we must identify strategies to keep patients engaged without adding human support in a
form that would limit scalability. Automated motivational push messaging (AMM) and light-touch human coach
support (CS) offer two such strategies. The proposed research tests these strategies, while drawing preliminary
conclusions about a hypothesized model of DMHI engagement based on the technology adoption and treatment
adherence literature. The model posits that two systems-level constructs (social influence and facilitating
conditions) and three patient-level constructs (attitude, self-efficacy, habit strength) drive DMHI engagement. In
Study 1 (N=20), I will employ user-centered design to develop and refine a set AMMs targeting the three
hypothesized patient-level engagement-driving constructs (Aim 1). In Study 2, I will recruit N=76 primary care
patients with depression and/or anxiety via provider referral to an 8-week 2x2 factorial clinical trial whereby
participants will all receive access to a DMHI with known efficacy and be randomized to an engagement strategy
condition (i.e., a previously-validated CS protocol, newly-developed AMM, both or neither). To further understand
how AMMs function, message delivery in the AMM arms will be micro-randomized: each day participants will be
randomized to receive a message or not, such that they receive an average of 4.2 messages/week. Micro-
randomization allows causal inference about the near-term impact of message delivery (i.e., are AMMs a cue to
action) and the relationship between message impact and context (e.g., time of day the message is delivered).
Measured outcome data will comprise level of engagement (operationalized as minutes of DMHI use), weekly
self-reports on the five engagement-driving constructs, and weekly self-reports of clinical outcomes. I will test
im pacts of each strategy on m easured outcom e data (Aim 2) and explore the hypothesized relationships between
engagement-driving constructs and DMHI engagement (Aim 3). Clinical outcomes will be assessed, however,
consistent with the experimental therapeutics model, this research leverages a DMHI with known efficacy,
allowing the focus to be an upstream target (patient engagement) rather than the clinical outcomes themselves.
The overarching goal is to influence the target so as to ultimately enhance clinical effectiveness. This project will
build my expertise in clinical trial design and build my proficiency in user-centered design (i.e., rapid, prototype
testing via field studies) and data science (i.e., analysis of intensive, correlated longitudinal data) methods
commonly applied in DMHI optimization research. Findings will lay a foundation for R01s aimed at optimizing
DMHIs for engagement, and ultimately effectiveness, when integrated into routine care.
项目概要
抑郁症和焦虑症是高度共存且代价高昂的疾病。循证心理治疗是一线治疗
治疗,但未得到充分利用且不可扩展。数字心理健康干预措施 (DMHI),通过
互联网和/或移动应用程序已发展成为有效且具有潜在可扩展性的治疗方法。然而,迄今为止,
常规护理的有效性因患者参与不足而受到限制。为了实现变革
DMHI 的潜力,我们必须确定策略来保持患者的参与,而不需要增加人力支持
形式会限制可扩展性。自动激励推送消息 (AMM) 和轻触式人工教练
支持(CS)提供了两种这样的策略。拟议的研究测试了这些策略,同时得出了初步的结论
基于技术采用和治疗的 DMHI 参与假设模型的结论
坚持文学。该模型假设两个系统级构造(社会影响力和促进
条件)和三个患者层面的构建(态度、自我效能、习惯强度)推动 DMHI 参与。在
研究1(N=20),我将采用以用户为中心的设计来开发和完善一套针对这三个目标的AMM
假设的患者层面的参与驱动结构(目标 1)。在研究 2 中,我将招募 N=76 初级保健人员
通过提供者转介患有抑郁症和/或焦虑症的患者参加为期 8 周的 2x2 析因临床试验,其中
参与者都将获得具有已知功效的 DMHI 的访问权限,并被随机分配到参与策略
条件(即先前验证的 CS 协议、新开发的 AMM、两者或两者都不是)。为了进一步了解
AMM 如何运作,AMM 手臂中的消息传递将是微随机的:每天参与者都会
随机分配是否接收消息,以便他们平均每周收到 4.2 条消息。微-
随机化允许对消息传递的近期影响进行因果推断(即 AMM 是否是一个提示)
动作)以及消息影响和上下文之间的关系(例如消息传递的时间)。
测量的结果数据将包括每周的参与水平(以 DMHI 使用分钟数的形式进行操作)
关于五种参与驱动结构的自我报告,以及临床结果的每周自我报告。我会测试
每种策略对测量结果数据的影响(目标 2)并探索之间的假设关系
参与驱动结构和 DMHI 参与(目标 3)。然而,将评估临床结果,
与实验治疗模型一致,本研究利用具有已知功效的 DMHI,
允许重点关注上游目标(患者参与),而不是临床结果本身。
总体目标是影响目标,从而最终提高临床效果。该项目将
培养我在临床试验设计方面的专业知识,并培养我在以用户为中心的设计(即快速、原型设计)方面的熟练程度
通过实地研究进行测试)和数据科学(即密集、相关的纵向数据分析)方法
常用于 DMHI 优化研究。研究结果将为旨在优化的 R01 奠定基础
当 DMHI 融入日常护理时,可提高参与度并最终提高有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessica Morrow Lipschitz其他文献
Jessica Morrow Lipschitz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessica Morrow Lipschitz', 18)}}的其他基金
Toward optimizing digital mental health interventions: A clinical trial aimed at understanding what drives patient engagement.
优化数字心理健康干预措施:一项旨在了解推动患者参与的因素的临床试验。
- 批准号:
10595517 - 财政年份:2020
- 资助金额:
$ 18.13万 - 项目类别:
Toward optimizing digital mental health interventions: A clinical trial aimed at understanding what drives patient engagement.
优化数字心理健康干预措施:一项旨在了解推动患者参与的因素的临床试验。
- 批准号:
10380604 - 财政年份:2020
- 资助金额:
$ 18.13万 - 项目类别:
Expanding the Foundation for Population-Based Anxiety Management Interventions
扩大基于人群的焦虑管理干预措施的基础
- 批准号:
8724994 - 财政年份:2013
- 资助金额:
$ 18.13万 - 项目类别:
Expanding the Foundation for Population-Based Anxiety Management Interventions
扩大基于人群的焦虑管理干预措施的基础
- 批准号:
8596024 - 财政年份:2013
- 资助金额:
$ 18.13万 - 项目类别:
相似海外基金
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 18.13万 - 项目类别:
Fellowship
Clinitouch-360: A digital health platform enabling robust end-to-end care of patients in Primary Care with depression and anxiety
Clinitouch-360:数字健康平台,可为初级保健中的抑郁和焦虑患者提供强大的端到端护理
- 批准号:
10098274 - 财政年份:2024
- 资助金额:
$ 18.13万 - 项目类别:
Collaborative R&D
Mental Health and Occupational Functioning in Nurses: An investigation of anxiety sensitivity and factors affecting future use of an mHealth intervention
护士的心理健康和职业功能:焦虑敏感性和影响未来使用移动健康干预措施的因素的调查
- 批准号:
10826673 - 财政年份:2024
- 资助金额:
$ 18.13万 - 项目类别:
Visual analysis system to detect and predict the signs of anxiety in healthcare
用于检测和预测医疗保健中焦虑迹象的视觉分析系统
- 批准号:
2902083 - 财政年份:2024
- 资助金额:
$ 18.13万 - 项目类别:
Studentship
Using generative AI combined with immersive technology to treat anxiety disorders
利用生成式人工智能结合沉浸式技术治疗焦虑症
- 批准号:
10109165 - 财政年份:2024
- 资助金额:
$ 18.13万 - 项目类别:
Launchpad
Healthy Young Minds: co-producing a nature-based intervention with rural High School students to promote mental well-being and reduce anxiety
健康的年轻心灵:与农村高中生共同开展基于自然的干预措施,以促进心理健康并减少焦虑
- 批准号:
MR/Z503599/1 - 财政年份:2024
- 资助金额:
$ 18.13万 - 项目类别:
Research Grant
"Flashforward" imagery and anxiety in young adults: Risk mechanisms and intervention development
年轻人的“闪现”意象和焦虑:风险机制和干预措施的发展
- 批准号:
MR/Y009460/1 - 财政年份:2024
- 资助金额:
$ 18.13万 - 项目类别:
Fellowship
How parents manage climate anxiety: coping and hoping for the whole family
父母如何应对气候焦虑:全家人的应对和希望
- 批准号:
DP230101928 - 财政年份:2024
- 资助金额:
$ 18.13万 - 项目类别:
Discovery Projects
An innovative biofeedback enhanced adaptive extended reality (XR) device to reduce perinatal pain and anxiety during and after childbirth
一种创新的生物反馈增强型自适应扩展现实 (XR) 设备,可减少分娩期间和分娩后的围产期疼痛和焦虑
- 批准号:
10097862 - 财政年份:2024
- 资助金额:
$ 18.13万 - 项目类别:
Collaborative R&D
Digital cognitive-behavior therapy for anxiety and depressive disorders: Building an impactful research project from international partnerships and knowledge exchange in primary care
针对焦虑和抑郁症的数字认知行为疗法:通过初级保健领域的国际合作和知识交流建立一个有影响力的研究项目
- 批准号:
480808 - 财政年份:2023
- 资助金额:
$ 18.13万 - 项目类别:
Miscellaneous Programs