Reproducibility and Robustness of Dimensionality Reduction

降维的再现性和鲁棒性

基本信息

  • 批准号:
    9977198
  • 负责人:
  • 金额:
    $ 58.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY In modern biomedical studies it has become commonplace to collect high-dimensional data, and hence dimen- sionality reduction tools are of critical importance and are routinely used. Some of the most common include clustering and factor analysis. The basic tenet behind dimensionality reduction is that we can replace a high dimensional set of variables by some low-dimensional summary. This is certainly necessary to make sense of complex data and also overcome problems with high-dimensional, low sample size data. However, a critical is- sue that has not been adequately studied is reproducibility. Standard approaches for dimension reduction can be very sensitive to choice of tuning parameters and arbitrary choices (e.g., choice of kernel or distance meas- ure). This leads to a lack of robustness, with potentially very different results being produced when data are slightly perturbed. This lack of robustness tends to be compounded as the size of the data increases - both in terms of the sample size and number of variables collected. Also, a critical issue is lack of generalizability. In particular, dimensionality reduction for a particular group of individuals may fundamentally lack generalizability to other groups of individuals. This creates major problems in interpretation of results. Motivated in particular by environmental epidemiology studies collecting exposome data and by nutritional epidemiology, this project proposes to develop fundamentally new methods for improving robustness and reproducibility of di- mensionality reduction through the following specific aims. (1) Develop robust methods of factor analysis designed to limit sensitivity to arbitrary assumptions and size of the data. (2) Develop robust methods of model-based clustering designed to limit sensitivity to arbitrary assump- tions and size of the data. (3) Develop novel methods for robust clustering from multivariate and grouped data designed to avoid typical pitfalls of mixture models with increasing p. (4) Develop robust consensus methods that estimate low dimensional summaries that best reflect struc- ture across subpopulations. (5) Apply the proposed methods to data from key epidemiologic cohorts that have measured a wide va- riety of environmental, behavioral, and biological exposures and provide a general use software package for implementation. This package is designed to be easily used and accommodate a broad variety of data types, further aiding reproducibility and transparency.
项目摘要 在现代生物医学研究中,收集高维数据已变得司空见惯,因此, 降低失真的工具是至关重要的,并且是常规使用的。其中最常见的反应包括 聚类和因子分析。降维背后的基本原则是,我们可以将高 通过一些低维的总结来描述变量的多维集合。这对于理解 复杂的数据,也克服了高维,低样本量数据的问题。然而,一个关键是- 尚未充分研究问题是可重复性。降维的标准方法可以 对调谐参数的选择和任意选择非常敏感(例如,选择内核或距离测量 ure)。这导致缺乏鲁棒性,当数据 有点不安随着数据大小的增加,这种鲁棒性的缺乏往往会变得更加严重-无论是在 样本量和收集的变量数量。此外,一个关键问题是缺乏普遍性。在 特别地,针对特定个体组的降维可能根本上缺乏普遍性 to other groups组of individuals个人.这在解释结果方面造成了重大问题。特别有动机 通过环境流行病学研究收集麻烦的数据和营养流行病学,该项目 建议从根本上开发新的方法,以提高DI的鲁棒性和再现性, 通过以下具体目标来减少抑郁症。 (1)开发强大的因素分析方法,旨在限制对任意假设的敏感性, 数据的大小。 (2)开发强大的基于模型的聚类方法,旨在限制对任意数据集的敏感性, 数据的大小和大小。 (3)开发新的方法,从多变量和分组数据中进行稳健的聚类, 避免混合模型的典型缺陷,随着p的增加。 (4)开发强大的共识方法,估计最能反映结构的低维摘要, 在亚群体中的真实性。 (5)将所提出的方法应用于来自关键流行病学队列的数据,这些队列测量了广泛的变量, 环境,行为和生物暴露的各种风险,并提供一个通用软件 包实施。该软件包设计为易于使用, 数据类型的多样性,进一步帮助再现性和透明度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

AMY H HERRING其他文献

AMY H HERRING的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('AMY H HERRING', 18)}}的其他基金

Reproducibility and Robustness of Dimensionality Reduction
降维的再现性和鲁棒性
  • 批准号:
    10215526
  • 财政年份:
    2017
  • 资助金额:
    $ 58.25万
  • 项目类别:
Bayesian Methods for High-Dimensional Epidemiologic Data
高维流行病学数据的贝叶斯方法
  • 批准号:
    8323920
  • 财政年份:
    2011
  • 资助金额:
    $ 58.25万
  • 项目类别:
Bayesian Methods for High-Dimensional Epidemiologic Data
高维流行病学数据的贝叶斯方法
  • 批准号:
    8830107
  • 财政年份:
    2011
  • 资助金额:
    $ 58.25万
  • 项目类别:
Bayesian Methods for High-Dimensional Epidemiologic Data
高维流行病学数据的贝叶斯方法
  • 批准号:
    8481216
  • 财政年份:
    2011
  • 资助金额:
    $ 58.25万
  • 项目类别:
Bayesian Methods for High-Dimensional Epidemiologic Data
高维流行病学数据的贝叶斯方法
  • 批准号:
    8856241
  • 财政年份:
    2011
  • 资助金额:
    $ 58.25万
  • 项目类别:
Bayesian Methods for High-Dimensional Epidemiologic Data
高维流行病学数据的贝叶斯方法
  • 批准号:
    8198149
  • 财政年份:
    2011
  • 资助金额:
    $ 58.25万
  • 项目类别:
Bayesian Methods for High-Dimensional Epidemiologic Data
高维流行病学数据的贝叶斯方法
  • 批准号:
    8685979
  • 财政年份:
    2011
  • 资助金额:
    $ 58.25万
  • 项目类别:
Workshop for Junior Biostatisticians in Health Research
健康研究初级生物统计学家研讨会
  • 批准号:
    8399486
  • 财政年份:
    2009
  • 资助金额:
    $ 58.25万
  • 项目类别:
Workshop for Junior Biostatisticians in Health Research
健康研究初级生物统计学家研讨会
  • 批准号:
    8009860
  • 财政年份:
    2009
  • 资助金额:
    $ 58.25万
  • 项目类别:
Workshop for Junior Biostatisticians in Health Research
健康研究初级生物统计学家研讨会
  • 批准号:
    7614780
  • 财政年份:
    2009
  • 资助金额:
    $ 58.25万
  • 项目类别:

相似国自然基金

Behavioral Insights on Cooperation in Social Dilemmas
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国优秀青年学者研究基金项目

相似海外基金

CAREER: Early-life social environments drive behavioral and neural mechanisms of development
职业:早期社会环境驱动行为和神经机制的发展
  • 批准号:
    2341006
  • 财政年份:
    2024
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Continuing Grant
NSF PRFB FY 2023: Assessing morphological, behavioral, and genetic impacts of methylmercury on spiders.
NSF PRFB 2023 财年:评估甲基汞对蜘蛛的形态、行为和遗传影响。
  • 批准号:
    2305949
  • 财政年份:
    2024
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Fellowship Award
A mobile health solution in combination with behavioral change approach to improve vaccination coverage and timeliness in Bangladesh: A cluster randomized control trial
移动健康解决方案与行为改变方法相结合,以提高孟加拉国的疫苗接种覆盖率和及时性:集群随机对照试验
  • 批准号:
    24K20168
  • 财政年份:
    2024
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The role of nigrostriatal and striatal cell subtype signaling in behavioral impairments related to schizophrenia
黑质纹状体和纹状体细胞亚型信号传导在精神分裂症相关行为障碍中的作用
  • 批准号:
    10751224
  • 财政年份:
    2024
  • 资助金额:
    $ 58.25万
  • 项目类别:
CAREER:HCC: Using Virtual Reality Gaming to Develop a Predictive Simulation of Human-Building Interactions: Behavioral and Emotional Modeling for Public Space Design
职业:HCC:使用虚拟现实游戏开发人类建筑交互的预测模拟:公共空间设计的行为和情感建模
  • 批准号:
    2339999
  • 财政年份:
    2024
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Continuing Grant
ICE-TI: A Decolonized Approach to an AAS in Social and Behavioral Sciences
ICE-TI:社会和行为科学中 AAS 的非殖民化方法
  • 批准号:
    2326751
  • 财政年份:
    2024
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Continuing Grant
Differentiating innate and conditioned fear in behavioral level using pupillometry and neural level using brain-wide traveling wave
使用瞳孔测量法区分行为水平上的先天性恐惧和条件性恐惧,并使用全脑行波区分神经水平上的先天性恐惧和条件性恐惧
  • 批准号:
    23K28389
  • 财政年份:
    2024
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Bilingualism as a cognitive reserve factor: the behavioral and neural underpinnings of cognitive control in bilingual patients with aphasia
双语作为认知储备因素:双语失语症患者认知控制的行为和神经基础
  • 批准号:
    10824767
  • 财政年份:
    2024
  • 资助金额:
    $ 58.25万
  • 项目类别:
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
  • 批准号:
    2341512
  • 财政年份:
    2024
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Behavioral Science and the Making of the Right-Reasoning Public Health Citizenry
合作研究:行为科学与正确推理的公共卫生公民的培养
  • 批准号:
    2341513
  • 财政年份:
    2024
  • 资助金额:
    $ 58.25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了