Active sensing at the sensory surface: glomerular signals for olfactory navigation by freely-moving mice
感觉表面的主动传感:自由移动小鼠的嗅觉导航的肾小球信号
基本信息
- 批准号:9978630
- 负责人:
- 金额:$ 64.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-15 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsAutomobile DrivingBehaviorBehavioralBehavioral AssayBiological AssayBrainBreathingCellsCodeComputational TechniqueControl AnimalCourtshipCuesDiseaseDorsalElectrophysiology (science)EnvironmentEventFoundationsFutureGlutamatesGrantHeadImageImmobilizationInhalationKineticsLaboratoriesLeadLearningLightLinkMapsMeasurementMeasuresMethodsMicroscopeMonitorMotionMovementMusNoseOdorsOlfactory PathwaysOperating SystemOpsinOpticsPatternPositioning AttributeProcessRecording of previous eventsRespirationSamplingSchizophreniaSensoryShapesSignal TransductionSmell PerceptionSourceStimulusStructureSurfaceTechniquesTestingTimeTimeLineWireless TechnologyWorkautism spectrum disordercalcium indicatordesignexperimental studyfictional worksinnovationinsightlight weightnervous system disorderneural circuitneuromechanismolfactory bulbolfactory bulb glomeruliolfactory sensory neuronsoptogeneticsrelating to nervous systemrestraintsensory inputsensory neurosciencesensory prosthesissensory system
项目摘要
Our senses aren’t passive. Rather, we actively seek relevant information via sampling movements.
However, experiments in sensory systems often restrict sampling movements to simplify stimulus delivery
and allow large scale imaging and electrophysiology. But whether sensory systems function equivalently in
restraint vs free sampling remains an open question. The mouse olfactory system presents a perfect
opportunity to address these issues. Mice are in constant motion, actively sniffing throughout their
environment. Here, we will establish an array of innovative techniques to image the sensory input to the
olfactory system, and to control that input optogenetically, all in unrestrained mice. We will perform these
experiments in the context of an unrestrained olfactory navigation assay we have established. Mice learn
this task rapidly, and solve the task by following the odor concentration gradient. Using real-time video
tracking of nose movements and thermal recording of respiration, we can monitor their sampling strategies.
We have found that mice develop a consistent repertoire of movements that are precisely synchronized to
the sniff cycle. Importantly, these behavioral dynamics are only revealed when an animal is able to move
naturally in the environment. In aim 1, we will image sensory input to the glomeruli of the olfactory bulb
during this navigation task. In mitral and tufted cells, we will express genetically encoded glutamate
indicators, which have much faster kinetics than the more widely-used calcium indicators. We can thus
capture fast temporal patterning of the input to the olfactory bulb. To image in freely-moving mice, we will
implement a miniature microscope design that can image the entire dorsal surface of the olfactory bulb in
freely-moving mice. In aim 2, we will develop a method for driving navigation behavior with fictive plumes
that we control optogenetically. Using a mouse line that expresses ChannelRhodopsin-2 in olfactory
sensory neurons, we will deliver light stimuli in closed loop with the mouse’s movements and inhalations. In
the timeline of this grant, we will use this technique to create fictive gradients of input amplitude, a neural
coding cue that is thought to represent odor concentration at the glomerular level. We have established a
behavioral task that allows us to study active sampling during olfactory navigation. In this proposal we will
perform the initial studies using this framework to understand the underlying neural mechanisms. This work
will advance our understanding of how we optimize our sensory input through sampling behavior, a process
that goes awry in neurological disorders such as schizophrenia and autism.
我们的感官不是被动的。相反,我们通过抽样运动积极寻求相关信息。
然而,感觉系统的实验通常限制采样运动以简化刺激传递
并允许大规模成像和电生理学。但是感觉系统是否在
限制还是自由取样仍然是一个悬而未决的问题。老鼠的嗅觉系统呈现出完美的
有机会解决这些问题。老鼠在不断的运动,积极嗅在他们的整个
环境在这里,我们将建立一系列创新技术,以图像的感官输入,
嗅觉系统,并控制输入光遗传学,所有这些都在不受限制的小鼠中进行。我们将执行这些
在我们已经建立的不受限制的嗅觉导航测定的背景下的实验。老鼠学习
这一任务迅速,并通过以下气味浓度梯度解决任务。使用实时视频
通过跟踪鼻子的运动和呼吸的热记录,我们可以监测它们的采样策略。
我们发现,小鼠发展出一致的动作,这些动作精确同步,
sniff循环重要的是,这些行为动力学只有在动物能够移动时才会显示出来。
自然在环境中。在目标1中,我们将对嗅球小球的感觉输入进行成像
在这次航行任务中。在二尖瓣和簇状细胞中,
指示剂,其具有比更广泛使用的钙指示剂快得多的动力学。大家可以
捕捉对嗅球的输入的快速时间模式。为了给自由移动的老鼠成像,
实现一种微型显微镜设计,可以成像整个背表面的嗅球,
自由移动的老鼠在aim 2中,我们将开发一种用虚构羽流驱动导航行为的方法
我们可以通过光遗传学控制。使用在嗅觉中表达Rhodopsin-2的小鼠系
感觉神经元,我们将提供光刺激与小鼠的运动和吸入闭环。在
在这个资助的时间轴上,我们将使用这种技术来创建输入幅度的虚构梯度,
被认为代表肾小球水平气味浓度的编码线索。我们建立了
行为任务,使我们能够在嗅觉导航过程中研究主动采样。在本提案中,我们将
使用这个框架进行初步研究,以了解潜在的神经机制。这项工作
将促进我们对如何通过采样行为优化感官输入的理解,
在精神分裂症和孤独症等神经系统疾病中会出现问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew C Smear其他文献
Matthew C Smear的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew C Smear', 18)}}的其他基金
Ethologically relevant short term memory in the olfactory bulb
嗅球中与行为学相关的短期记忆
- 批准号:
10300826 - 财政年份:2021
- 资助金额:
$ 64.51万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 64.51万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 64.51万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 64.51万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 64.51万 - 项目类别:
Discovery Early Career Researcher Award
Zootropolis: Multi-species archaeological, ecological and historical approaches to animals in Medieval urban Scotland
Zootropolis:苏格兰中世纪城市动物的多物种考古、生态和历史方法
- 批准号:
2889694 - 财政年份:2023
- 资助金额:
$ 64.51万 - 项目类别:
Studentship
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 64.51万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 64.51万 - 项目类别:
Training Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 64.51万 - 项目类别:
Continuing Grant
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 64.51万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 64.51万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)