ECM stiffness, mechanotransduction, and cell cycling
ECM 硬度、力转导和细胞循环
基本信息
- 批准号:9978116
- 负责人:
- 金额:$ 42.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AbbreviationsAddressAdhesionsAffectAgeAreaArteriesAtomic Force MicroscopyBCAR1 geneBiologicalBiological ModelsCardiovascular DiseasesCell Culture TechniquesCell CycleCell Cycle RegulationCell ProliferationCellsComplementConnective TissueCuesCyclin D1Cyclin-Dependent KinasesCyclinsDataEmbryoEventExtracellular MatrixExtracellular Matrix ProteinsFamilyFibroblastsFibronectinsFibrosisFluorescent in Situ HybridizationFocal Adhesion Kinase 1G1 PhaseGuanosine TriphosphateGuanosine Triphosphate PhosphohydrolasesHistologyHydrogelsImmunoprecipitationIn VitroInjuryIntegrinsLeadLiver FibrosisMALAT1 geneMYH11 geneMalignant NeoplasmsMechanicsMediatingMolecularMolecular AnalysisMusPathologyPathway AnalysisPhysiologyProliferatingProtein-Lysine 6-OxidaseProteinsPulmonary FibrosisRegulationRepressionResearchS PhaseSignal PathwaySignal TransductionSmooth MuscleSmooth Muscle Actin Staining MethodSmooth Muscle MyocytesSpecificitySurfaceTamoxifenTestingTissue ModelTissuesTunica AdventitiaUntranslated RNAVascular Smooth MuscleWestern Blottingarterial stiffnessbaseexperimental studyextracellularin vivoinhibitor/antagonistinterestkinase inhibitorlocked nucleic acidmechanotransductionmouse modelmyocardinnovelpaxillinpreventprogramsresponserhotranscription factortranscriptome sequencingvascular injury
项目摘要
SUMMARY
Mechanobiology--how cells and tissues sense and respond to mechanical influences--is a rapidly
growing field of increasing importance to the understanding of physiology and fibrosis-associated pathologies
including cancer, lung and liver fibrosis, and especially cardiovascular disease. This application studies how
cells sense and respond to mechanical cues contained within the stiffness of the extracellular matrix (ECM).
Mechanical information in the ECM is relayed through integrin-adhesions and Rho family GTPases, but how
these early signaling events drive cell fate and function remains poorly understood. Unraveling these
connections is a major challenge in the field. We are addressing this gap in understanding by examining how
changes in ECM stiffness are transduced into the signaling events that control cell cycling. By combining
molecular analyses with cell culture on deformable substrata (hydrogels), we recently showed that focal
adhesion kinase (FAK), p130Cas, and Rac comprise a discrete signaling module that functions as a positive
regulator of stiffness-sensitive cyclin D1 expression and cell cycling into S phase. But signaling in non-
transformed cells is rarely linear and uni-directional: negative regulation commonly complements positive
signaling to provide tight control of fate. These negative signals and pathways are often not well understood,
and this is certainly the case for stiffness-regulated mechanotransduction. We therefore used RNASeq to
search for ways that cells might limit stiffness-sensing to prevent over-stimulation. This analysis identified the
long noncoding RNA, MALAT1, as a novel negative regulator of stiffness-dependent cell cycling: MALAT1
stimulates entry into S phase, but ECM stiffness reduces the expression level of MALAT1. Curiously, stiffness-
stimulated Rac activity mediates both the induction of cyclin D1 and the repression of MALAT1. We now
propose to examine the relationships between ECM stiffness, MALAT1 and cyclin D1, and their upstream
activators. Aim 1 will examine the impact of MALAT1 on the G1 phase cyclin-cdks, assess crosstalk between
MALAT1 and cyclin D1, and determine how changes in ECM composition and integrin display may affect
rigidity-dependent regulation of MALAT1, cyclin D1 and cell cycling. Aim 2 looks upstream of cyclin D1 and
MALAT1 and will determine how distinct components in the integrin-adhesion that share an ability to activate
Rac can differentially regulate MALAT1. Finally, Aim 3 will test the relevance of our findings in vivo by
analyzing smooth muscle cell proliferation in a mouse model of tissue stiffening and smooth muscle cell
proliferation after vascular injury.
总结
机械生物学--细胞和组织如何感知和响应机械影响--是一个快速的
对生理学和纤维化相关病理学的理解越来越重要的日益增长的领域
包括癌症、肺和肝纤维化,尤其是心血管疾病。本应用程序研究如何
细胞感知并响应包含在细胞外基质(ECM)硬度内的机械信号。
ECM中的机械信息通过整合素粘附和Rho家族GTP酶传递,但如何传递呢?
这些早期信号事件驱动细胞命运和功能仍然知之甚少。解开这些
连接是该领域的一项重大挑战。我们正在通过研究如何解决这一理解上的差距,
ECM硬度的变化被转换成控制细胞周期的信号事件。通过组合
在可变形基质(水凝胶)上进行细胞培养的分子分析,我们最近表明,
粘附激酶(FAK)、p130 Cas和Rac组成了一个独立的信号传导模块,
刚性敏感性细胞周期蛋白D1表达和细胞周期进入S期的调节剂。但在非-
转化的细胞很少是线性和单向的:负调控通常补充正调控
发出信号以提供对命运的严格控制。这些负面信号和途径往往没有得到很好的理解,
这当然是刚度调节机械传导的情况。因此,我们使用RNASeq来
寻找细胞可能限制僵硬感的方法,以防止过度刺激。分析发现,
长链非编码RNA,MALAT 1,作为一种新的刚度依赖性细胞周期的负调控因子:MALAT 1
刺激进入S期,但ECM硬度降低MALAT 1的表达水平。奇怪的是,僵硬-
受刺激的Rac活性介导细胞周期蛋白D1的诱导和MALAT 1的阻遏。我们现在
建议检查ECM刚度,MALAT 1和细胞周期蛋白D1之间的关系,
活化剂。目标1将检查MALAT 1对G1相位周期-cdks的影响,评估
MALAT 1和细胞周期蛋白D1,并确定ECM组成和整合素显示的变化如何影响
MALAT 1、细胞周期蛋白D1和细胞周期的刚性依赖性调节。Aim 2位于细胞周期蛋白D1的上游,
MALAT 1,并将确定整合素粘附中的不同组分如何共享激活
Rac可以差异调节MALAT 1。最后,目标3将通过以下方式测试我们的发现在体内的相关性:
分析组织硬化和平滑肌细胞增殖的小鼠模型中的平滑肌细胞增殖
血管损伤后的增殖。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Assoian其他文献
Richard Assoian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Assoian', 18)}}的其他基金
Arterial stiffening and SMC mechanobiology in Hutchinson-Guilford Progeria Syndrome
哈钦森-吉尔福德早衰综合症中的动脉硬化和 SMC 力学生物学
- 批准号:
10368103 - 财政年份:2019
- 资助金额:
$ 42.49万 - 项目类别:
Arterial stiffening and SMC mechanobiology in Hutchinson-Guilford Progeria Syndrome
哈钦森-吉尔福德早衰综合症中的动脉硬化和 SMC 力学生物学
- 批准号:
10609809 - 财政年份:2019
- 资助金额:
$ 42.49万 - 项目类别:
Arterial stiffening and SMC mechanobiology in Hutchinson-Guilford Progeria Syndrome
哈钦森-吉尔福德早衰综合症中的动脉硬化和 SMC 力学生物学
- 批准号:
9816369 - 财政年份:2019
- 资助金额:
$ 42.49万 - 项目类别:
ECM stiffness, mechanotransduction, and cell cycling
ECM 硬度、力转导和细胞循环
- 批准号:
10210426 - 财政年份:2018
- 资助金额:
$ 42.49万 - 项目类别:
Aging, gender and arterial stiffness in atherosclerosis
动脉粥样硬化中的衰老、性别和动脉僵硬度
- 批准号:
8668406 - 财政年份:2014
- 资助金额:
$ 42.49万 - 项目类别:
apoE, arterial biomechanics, and cardiovascular disease
apoE、动脉生物力学和心血管疾病
- 批准号:
8919442 - 财政年份:2014
- 资助金额:
$ 42.49万 - 项目类别:
apoE, arterial biomechanics, and cardiovascular disease
apoE、动脉生物力学和心血管疾病
- 批准号:
8771694 - 财政年份:2014
- 资助金额:
$ 42.49万 - 项目类别:
apoE, arterial biomechanics, and cardiovascular disease
apoE、动脉生物力学和心血管疾病
- 批准号:
9081644 - 财政年份:2014
- 资助金额:
$ 42.49万 - 项目类别:
apoE, arterial biomechanics, and cardiovascular disease
apoE、动脉生物力学和心血管疾病
- 批准号:
9305135 - 财政年份:2014
- 资助金额:
$ 42.49万 - 项目类别:
Aging, gender and arterial stiffness in atherosclerosis
动脉粥样硬化中的衰老、性别和动脉僵硬度
- 批准号:
9268535 - 财政年份:2014
- 资助金额:
$ 42.49万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 42.49万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 42.49万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 42.49万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 42.49万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 42.49万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 42.49万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 42.49万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 42.49万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 42.49万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 42.49万 - 项目类别:
Research Grant