Predicting Patient Outcome in Multiple Sclerosis using a Quantitative Radiomic Approach
使用定量放射组学方法预测多发性硬化症患者的结果
基本信息
- 批准号:9979980
- 负责人:
- 金额:$ 8.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectBehaviorBiological MarkersBlindedBrainBrain PathologyCentral Nervous System DiseasesChronicClinicalClinical DataCombined Modality TherapyDataData SetDecision Support SystemsDimensionsDiseaseEnrollmentFunctional disorderGoalsImageIndividualInflammatoryInvestigationLesionLightMachine LearningMagnetic Resonance ImagingMeasuresMedical ImagingModelingMonitorMultiple SclerosisMultiple Sclerosis LesionsMultivariate AnalysisOncologyOutcomePathologyPatient-Focused OutcomesPatientsPerformancePhasePhenotypeRegimenRelapseRelapsing-Remitting Multiple SclerosisRiskSeverity of illnessSocietiesTechniquesTestingTherapeuticTissuesTrainingUnited StatesValidationVariantbaseclinical applicationclinical decision supportclinical decision-makingclinical heterogeneityclinical phenotypeclinically relevantcohortdigitaldisabilitydisease phenotypefeature selectionimaging biomarkerinsightmachine learning methodmiddle agemultidimensional datamultiple sclerosis patientnovelopen sourcepatient responsepersonalized carepersonalized medicinepredictive modelingquantitative imagingradiomicsresponseroutine practicestandard of caretreatment armtreatment response
项目摘要
Project Summary:
Multiple sclerosis (MS), a leading cause of disability in young and middle-aged adults, is a highly
heterogeneous disease, with wide variations in clinical presentation, disease course and response to
treatment. In order to personalize care in MS, it is important to harness its clinical heterogeneity and
the diversity of its underlying pathology, and to develop models able to predict individual behavior of
patients. Brain magnetic resonance images (MRI), acquired routinely in MS patients, contain
information that reflects underlying pathophysiology, which may be brought into light through
quantitative analyses. Radiomics, a technique well developed in oncology, converts routine medical
images into mineable high-dimensional data that can be modeled to support clinical decision-making.
The central hypothesis of the proposed project is that radiomic analysis, combined with careful
feature selection and accurate modeling, can predict patient outcome and response to therapy using
standard-of-care MRI in MS. Our hypothesis will be tested by leveraging existing 3-year imaging and
clinical data from the CombiRx trial, a multi-center, phase-III investigation of combination therapy in
1008 relapsing-remitting MS (RRMS) patients.
We will first determine the potential for non-invasive radiomic biomarkers of disease severity in
RRMS. Towards this goal, we will extract radiomic features of MS lesions from FLAIR, pre and
postcontrast T1-weighted MR images using an open-source radiomic pipeline. Through appropriate
feature selection, we will identify an independent radiomic feature set able to characterize individual
phenotype on MRI in a selection cohort. We will then evaluate the selected features cross-sectionally
to determine their efficacy in characterizing disease severity, leveraging training and validation
subsets. The performance of our radiomic approach will be compared to traditional models using
clinical and standard imaging markers such as lesion volume.
In the second stage of this proposal, we will explore the performance of radiomic-based models to
predict long-term outcome and treatment response in MS. We will build models to predict disease
activity free status (DAFS) at 3 years using selected baseline radiomic features, and identify
treatment response phenotypes. We will investigate and compare the performance of various
machine-learning models in an unbiased manner. Finally, we will assess the effect of each
therapeutic regimen on radiomic features by comparing on-treatment changes across treatment arms.
This may provide evidence for treatment-specific monitoring parameters.
项目总结:
多发性硬化症(MS)是年轻人和中年人残疾的主要原因,是一种高度危险的疾病。
异质性疾病,在临床表现、病程和对
治疗。为了在MS中实现个性化护理,重要的是利用其临床异质性和
其潜在病理的多样性,并开发能够预测个体行为的模型
病人。多发性硬化症患者常规获得的脑磁共振图像(MRI)包含
反映潜在病理生理学的信息,这些信息可以通过
定量分析。放射组学,一项在肿瘤学领域发展良好的技术,改变了常规医学
将图像转换为可挖掘的高维数据,可对其进行建模以支持临床决策。
拟议项目的中心假设是,放射学分析与仔细的
特征选择和准确的建模,可以预测患者的结果和治疗反应
我们的假设将通过利用现有的3年成像和
来自CombiRx试验的临床数据,这是一项联合治疗的多中心III期研究
1008例复发缓解型多发性硬化(RRMS)患者。
我们将首先确定疾病严重程度的非侵入性放射组学生物标志物的可能性
RRMS。为此,我们将从FLAIR、PRE和
使用开源放射管道的增强后T1加权磁共振图像。通过适当的
特征选择,我们将识别一个独立的放射学特征集,能够表征个体
选择队列中核磁共振的表型。然后,我们将对所选要素进行横截面评估
确定它们在确定疾病严重程度、利用培训和验证方面的有效性
子集。我们的放射组学方法的性能将与传统的使用
临床和标准影像指标,如病变体积。
在这项提案的第二阶段,我们将探索基于放射组学的模型的性能
预测多发性硬化症的长期结果和治疗反应我们将建立预测疾病的模型
3年时使用选定的基线放射学特征的无活动状态(DAFS),并确定
治疗反应表型。我们将调查和比较各种不同的性能
以不偏不倚的方式建立机器学习模型。最后,我们将评估每个方案的效果
通过比较治疗过程中不同治疗臂的变化,观察治疗方案对放射学特征的影响。
这可能为特定的治疗监测参数提供证据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leorah Aude Freeman其他文献
Leorah Aude Freeman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
NSF Postdoctoral Fellowship in Biology: Rewriting the Code: Elucidating how early life adversity alters DNA to affect amygdala-related behavior
NSF 生物学博士后奖学金:重写代码:阐明早年逆境如何改变 DNA 从而影响杏仁核相关行为
- 批准号:
2208822 - 财政年份:2023
- 资助金额:
$ 8.17万 - 项目类别:
Fellowship Award
THE AFFECT OF REGINAOL CHATACTERISTIC ON TRAVEL BEHAVIOR AND HELTH FROM DRIVING CESSATON
雷吉诺尔特征对驾驶塞萨顿旅行行为和健康的影响
- 批准号:
20K04741 - 财政年份:2020
- 资助金额:
$ 8.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Does financial education affect financial behavior?
财商教育会影响财商行为吗?
- 批准号:
19K01769 - 财政年份:2019
- 资助金额:
$ 8.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
How the online shopping and flea market apps affect the consumer behavior and cross border electronic commerce?
网购和跳蚤市场应用程序如何影响消费者行为和跨境电子商务?
- 批准号:
18K01798 - 财政年份:2018
- 资助金额:
$ 8.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
When free trade agreement meets competition----How does EU-Korea FTA affect Japanese firms' investment behavior
当自贸协定遇上竞争——欧盟-韩国自贸协定如何影响日本企业的投资行为
- 批准号:
18K12777 - 财政年份:2018
- 资助金额:
$ 8.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examination of the relationship between the maternal mental health, and the development and behavior of children, and the psychosocial factors that affect them
检查母亲心理健康与儿童的发展和行为之间的关系以及影响他们的心理社会因素
- 批准号:
17K16375 - 财政年份:2017
- 资助金额:
$ 8.17万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
How Does Early Sensory Experience Affect Cortical Connections and Behavior?
早期感官体验如何影响皮质连接和行为?
- 批准号:
9030107 - 财政年份:2015
- 资助金额:
$ 8.17万 - 项目类别:
How Does Early Sensory Experience Affect Cortical Connections and Behavior?
早期感官体验如何影响皮质连接和行为?
- 批准号:
9197675 - 财政年份:2015
- 资助金额:
$ 8.17万 - 项目类别:
Childhood positive affect and anger as predictors of adolescent risky behavior
童年积极影响和愤怒是青少年危险行为的预测因素
- 批准号:
9139461 - 财政年份:2015
- 资助金额:
$ 8.17万 - 项目类别:
Do short term changes in atmospheric pressure affect the calling behavior of male crickets
大气压力的短期变化会影响雄性蟋蟀的叫声行为吗
- 批准号:
467890-2014 - 财政年份:2014
- 资助金额:
$ 8.17万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




