Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
基本信息
- 批准号:9979986
- 负责人:
- 金额:$ 61.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAffectAnimalsAuditoryAutopsyAxonBehaviorBrainCalciumCalcium SignalingCell Membrane PermeabilityCellsChargeChronicClinicalCoculture TechniquesConnexinsCultured CellsDepositionDetectionDiseaseDoseElectric StimulationElectrodesEndothelial CellsExtravasationFrequenciesGasesGliosisHealthHistologyHourHyperactive behaviorImageImmunohistochemistryImplantImplanted ElectrodesIn VitroInflammationInflammatoryInjectionsInterphaseLabelLinkMeasuresMedicineMethodologyMicroelectrodesMicrogliaMonitorMorphologyMusNervous System PhysiologyNeuritesNeuronsNeurosciencesPermeabilityPhagocytosisPhysiologic pulsePolymersPropertyProtein AnalysisProteinsRNA analysisResearch PersonnelSafetySiteStructureSystemTechnologyTestingTherapeuticTimeTissuesToxic effectVisualWidthbasebiomaterial compatibilitycell behaviorcell motilitycell typedensityelectric impedanceexperimental studyimplantationimprovedin vivoin vivo Modelin vivo imaginginterestiridium oxidemicrostimulationmulti-electrode arraysnanocompositenanomaterialsneural stimulationneuron lossneuronal cell bodyprotein expressionrelating to nervous systemresponserestorationsafety testingsomatosensorytooltwo photon microscopy
项目摘要
Microstimulation has been an invaluable tool for neuroscience researchers to infer functional connections
between brain structures or causal links between structure and behavior. In recent years, therapeutic
microstimulation is gaining interest for the restoration of visual, auditory and somatosensory functions as well
as emerging applications in bioelectronic medicine. Current neural stimulation parameters and safety limits
need to be revised for microelectrodes using more systematic and advanced methodologies. Stimulations via
microelectrodes often require high charge injection for effective modulation of neural tissue without exceeding
the threshold to harm the tissue or the electrodes. Therefore, advanced electrode materials with high charge
injection capability and stability are highly desired. We have developed several types of stimulation materials
based on conducting polymer PEDOT and nanomaterial composites. These materials present different charge
transfer and electrochemical properties as well as biocompatibility, and the effects of these properties on
microstimulation have yet to be comprehensively characterized. This proposal aims to establish new in vitro
and in vivo models to examine the efficiency and safety of stimulation via multiple electrode materials, ranging
from the clinically approved Pt and Iridium Oxide (IrOx) to the emerging PEDOT nanocomposites. Another
challenge with micro-stimulation is its sensitivity to host tissue responses. Implantation of electrodes causes
electrode fouling, progressive neuronal loss and inflammatory gliosis immediately surrounding the implants.
Loss of nearby neurons and axons leads to decreased stimulation efficacy, while electrode fouling and gliosis
increase impedance. Additionally, stimulation itself may further exacerbate host tissue responses if above the
safety limit, which has yet to be defined for microelectrodes and emerging electrode materials. Using in vivo
imaging in fluorescently labeled mice, we will examine the acute and chronic effects of microstimulation on
neurons, microglia and vasculature, while monitoring the electrode material and electrochemical products. We
will use an in vitro multielectrode arrays (MEA) system to study the effects of electrical stimulation on material
and cells, in order to pinpoint the mechanisms of material and tissue damage.
The first aime is to assess the efficiency and safety limit of neural stimulation via different
electrode materials in vivo in acute experiments. For efficiency testing, we will implant the electrodes in the
cortices of GCaMP mice and use 2-photon microscopy to image the calcium signal in order to determine
stimulation threshold and optimum stimulation parameter for each electrode material. as a function of
stimulation parameters. Stimulation threshold and efficiency for different pulse width, interphase period, bias
potential and frequency from each electrode material type will be determined. For safety testing, we will use
Syn-RCaMP/Cx3Cr1-GFP mice to visualize both neuronal and microglia cells and determine the damage
threshold.
The second aim is to examine the effects of stimulation on electrode materials and cultured
cells in vitro. Using a high-throughput in vitro MEA system in which the six microelectrode materials can be
deposited, we will stimulate at safe and unsafe parameters (identified in vivo from Aim 1) for up to 12 weeks.
We will assess electrode material stability and analyze the stimulated media to identify electrochemical and
degradation products. The toxicity of stimulated media will be tested in cultures of neuron, microglia,
endothelial cells and neuron-microglia co-culture at varying doses to determine the detrimental effects of
electrochemical and degradation products on these cells. Finally, we will directly stimulate the cells cultured on
MEAs and characterize cell behavior using quantitative RNA and protein analysis, neural recording/stimulation
and immunohistochemistry.
The third aim is to characterize the chronic safety and stability of microstimulation in vivo from
different electrode materials. Stimulation will be applied one hour per day to microelectrode arrays
chronically implanted in Syn-RCaMP/Cx3Cr1-GFP animals for 12 weeks. In each weekly imaging session, we
will measure the in vivo impedance, CV, charge injection limit, and stimulation threshold. The neuronal
response (activity, health, density), microglia (morphology, coverage and motility) and BBB integrity will be
recorded, and compared over time points between material types, and to the non-stimulated sites. In addition,
we will closely track the electrode health with electrochemical interrogation, imaging and explant analysis.
微刺激已经成为神经科学研究人员推断功能联系的宝贵工具
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XINYAN Tracy CUI其他文献
XINYAN Tracy CUI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XINYAN Tracy CUI', 18)}}的其他基金
Opioid-Sparing Non-Surgical, Bioresorbable Nerve Stimulator for Pain Relief
节省阿片类药物的非手术生物可吸收神经刺激器,用于缓解疼痛
- 批准号:
10759642 - 财政年份:2023
- 资助金额:
$ 61.4万 - 项目类别:
Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
- 批准号:
10622204 - 财政年份:2019
- 资助金额:
$ 61.4万 - 项目类别:
Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
- 批准号:
10421288 - 财政年份:2019
- 资助金额:
$ 61.4万 - 项目类别:
Ultra sensitive and flexible MEAs for chronic dopamine detection at both tonic and phasic levels
超灵敏且灵活的 MEA,用于强直和阶段性水平的慢性多巴胺检测
- 批准号:
9814422 - 财政年份:2019
- 资助金额:
$ 61.4万 - 项目类别:
Optimization and Delivery of Bioactive Coating for High Yield and Stable Neural Recording
用于高产量和稳定神经记录的生物活性涂层的优化和交付
- 批准号:
10264798 - 财政年份:2019
- 资助金额:
$ 61.4万 - 项目类别:
Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
- 批准号:
10653699 - 财政年份:2019
- 资助金额:
$ 61.4万 - 项目类别:
Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
- 批准号:
10183351 - 财政年份:2019
- 资助金额:
$ 61.4万 - 项目类别:
Efficiency and Safety of Microstimulation Via Different Electrode Materials
通过不同电极材料进行微刺激的效率和安全性
- 批准号:
10842106 - 财政年份:2019
- 资助金额:
$ 61.4万 - 项目类别:
Optimization and Delivery of Bioactive Coating for High Yield and Stable Neural Recording
用于高产量和稳定神经记录的生物活性涂层的优化和交付
- 批准号:
10470899 - 财政年份:2019
- 资助金额:
$ 61.4万 - 项目类别:
Optimization and Delivery of Bioactive Coating for High Yield and Stable Neural Recording
用于高产量和稳定神经记录的生物活性涂层的优化和交付
- 批准号:
10022175 - 财政年份:2019
- 资助金额:
$ 61.4万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 61.4万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 61.4万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 61.4万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 61.4万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 61.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 61.4万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 61.4万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 61.4万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 61.4万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 61.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists