Monitoring tumor subclonal heterogeneity over time and space

监测肿瘤亚克隆异质性随时间和空间的变化

基本信息

  • 批准号:
    9980298
  • 负责人:
  • 金额:
    $ 75.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY DNA sequencing and new computational approaches have yielded detailed maps of clonal variation in human cancer. While changes in clonal structure over time and under the selective pressure of treatment have been extensively studied in hematologic malignancies, solid cancers are less well characterized owing to the relative lack of suitable tumor material. Analyses of breast and ovarian cancer have demonstrated substantial clonal variation between metastatic sites and polyclonal heterogeneity within individual tumor deposits, yet our understanding of the dynamics of clonal change in breast and ovarian cancer and its role in therapeutic response and the emergence of resistance is in its infancy. By combining expertise in mutation detection and genomic analysis with access to unique patient cohorts, this proposal will develop critically needed methods to identify all genomic changes in tumors in order to resolve a tumor's clonal substructure as it evolves over time or space in response to treatment. We will apply our tools in two key patient cohorts: 1) longitudinal samples from early stage, neoadjuvant breast cancer patients biopsied before, during, and after the completion of initial chemotherapy; and 2) tumor cells from metastatic breast and ovarian cancer patients at multiple time-points during their treatment with multiple courses of chemotherapy (breast and ovarian) and at time of autopsy (ovarian). The Specific Aims are to: (1) Develop and apply comprehensive mutation detection to identify the genetic lesions that develop in patient tumors over time during the course of chemotherapy, or at multiple distinct metastatic lesions. Using these tools, we will measure the cellular prevalence of mutations among multiple biopsies from both breast and ovarian patient cohorts. (2) Comprehensively prioritize mutations based on the likelihood that they drive tumor evolution. We will use these methods to prioritize consequential mutations and to gain insight into the potential mechanisms underlying clonal evolution. (3) Delineate tumor subclone structure and its evolution across longitudinal tumor biopsies and multiple metastatic lesions. By estimating the cellular prevalence of all forms of mutation in each biopsy, these innovations will enable a better understanding of how tumor subclone populations evolve over time and space and evade response to chemotherapy. (4) Create an interactive, web-based software platform for the analysis exploration of tumor subclone structure. In summary, the proposed research will devise and apply new algorithms that will improve our understanding of the dynamics of breast and ovarian cancer evolution over time and space.
项目摘要 DNA测序和新的计算方法已经产生了详细的克隆变异图, 人类癌症虽然随着时间的推移和在处理的选择压力下克隆结构的变化 虽然在血液恶性肿瘤中进行了广泛的研究,但由于实体癌的存在, 相对缺乏合适的肿瘤材料。对乳腺癌和卵巢癌的分析表明, 转移部位之间的克隆变异和个体肿瘤沉积物内的多克隆异质性,然而我们的 了解乳腺癌和卵巢癌中克隆变化的动态及其在治疗中的作用 反应和耐药性的出现还处于起步阶段。 通过将突变检测和基因组分析方面的专业知识与获得独特的患者信息相结合, 该提案将开发急需的方法来识别肿瘤中的所有基因组变化, 以解决肿瘤的克隆亚结构,因为它随着时间或空间的演变,以应对治疗。我们将 将我们的工具应用于两个关键的患者队列:1)来自早期新辅助乳腺癌的纵向样本 在初始化疗之前、期间和完成之后对患者进行活检;以及2)来自 转移性乳腺癌和卵巢癌患者在接受多药治疗期间的多个时间点 化疗疗程(乳腺和卵巢)和尸检时(卵巢)。 具体目标是:(1)开发和应用综合突变检测技术, 在化疗过程中,或在化疗期间,随着时间的推移在患者肿瘤中发展的遗传病变, 多处明显的转移病灶使用这些工具,我们将测量突变的细胞流行率, 在来自乳腺和卵巢患者队列的多个活组织检查中。(2)全面优先 根据它们驱动肿瘤演变的可能性来确定突变。我们将使用这些方法来确定优先顺序 结果突变,并深入了解潜在的机制克隆进化。(三) 描述肿瘤亚克隆结构及其在纵向肿瘤活检和多个 转移性病变通过估计每次活检中所有形式突变的细胞患病率, 创新将使我们能够更好地了解肿瘤亚克隆群体如何随时间和空间而演变 逃避化疗的反应(4)创建一个基于Web的交互式软件平台, 肿瘤亚克隆结构的分析探索。总之,拟议的研究将设计和应用 新的算法将提高我们对乳腺癌和卵巢癌演变动态的理解 穿越时空

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gabor T Marth其他文献

Extending reference assembly models
  • DOI:
    10.1186/s13059-015-0587-3
  • 发表时间:
    2015-01-24
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Deanna M Church;Valerie A Schneider;Karyn Meltz Steinberg;Michael C Schatz;Aaron R Quinlan;Chen-Shan Chin;Paul A Kitts;Bronwen Aken;Gabor T Marth;Michael M Hoffman;Javier Herrero;M Lisandra Zepeda Mendoza;Richard Durbin;Paul Flicek
  • 通讯作者:
    Paul Flicek

Gabor T Marth的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gabor T Marth', 18)}}的其他基金

Data Management Core
数据管理核心
  • 批准号:
    10682165
  • 财政年份:
    2023
  • 资助金额:
    $ 75.59万
  • 项目类别:
A reference-free computational algorithm for comprehensive somatic mosaic mutation detection
一种用于综合体细胞嵌合突变检测的无参考计算算法
  • 批准号:
    10662755
  • 财政年份:
    2023
  • 资助金额:
    $ 75.59万
  • 项目类别:
Accelerating genomic analysis for time critical clinical applications
加速时间紧迫的临床应用的基因组分析
  • 批准号:
    10593480
  • 财政年份:
    2023
  • 资助金额:
    $ 75.59万
  • 项目类别:
Calypso: a web software system supporting team-based, longitudinal genomic diagnostic care
Calypso:支持基于团队的纵向基因组诊断护理的网络软件系统
  • 批准号:
    10559599
  • 财政年份:
    2022
  • 资助金额:
    $ 75.59万
  • 项目类别:
Enhancing clinical diagnostic analysis with a robust de novo mutation detection tool
使用强大的从头突变检测工具增强临床诊断分析
  • 批准号:
    10608743
  • 财政年份:
    2022
  • 资助金额:
    $ 75.59万
  • 项目类别:
Calypso: a web software system supporting team-based, longitudinal genomic diagnostic care
Calypso:支持基于团队的纵向基因组诊断护理的网络软件系统
  • 批准号:
    10376642
  • 财政年份:
    2022
  • 资助金额:
    $ 75.59万
  • 项目类别:
Cardiovascular Development Data Resource Center (CDDRC)
心血管发育数据资源中心 (CDDRC)
  • 批准号:
    10461828
  • 财政年份:
    2020
  • 资助金额:
    $ 75.59万
  • 项目类别:
Cardiovascular Development Data Resource Center (CDDRC)
心血管发育数据资源中心 (CDDRC)
  • 批准号:
    10027798
  • 财政年份:
    2020
  • 资助金额:
    $ 75.59万
  • 项目类别:
Cardiovascular Development Data Resource Center (CDDRC)
心血管发育数据资源中心 (CDDRC)
  • 批准号:
    10242178
  • 财政年份:
    2020
  • 资助金额:
    $ 75.59万
  • 项目类别:
Longitudinal models of breast cancer for studying mechanisms of therapy response and resistance
用于研究治疗反应和耐药机制的乳腺癌纵向模型
  • 批准号:
    10457293
  • 财政年份:
    2018
  • 资助金额:
    $ 75.59万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75.59万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 75.59万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 75.59万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 75.59万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 75.59万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 75.59万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 75.59万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 75.59万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 75.59万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 75.59万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了