Therapeutic genome editing to treat Best disease
治疗性基因组编辑治疗最佳疾病
基本信息
- 批准号:9980913
- 负责人:
- 金额:$ 42.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesAtrophicAuditoryBioinformaticsBiological AssayBiologyBiomedical EngineeringCRISPR/Cas technologyCalciumCell LineCell TherapyCellsCellular biologyChloride ChannelsCodeComputer AnalysisComputer softwareDNADNA DamageDiseaseDominant-Negative MutationElectrophysiology (science)EventExcisionFutureGene therapy trialGenesGeneticGenetic DiseasesGenetic PolymorphismGenomeGenomicsGuide RNAIn VitroLeadLightLipidsMacular degenerationMethodsMuscleMutationNervous system structurePatientsPhenotypePhotoreceptorsProgressive DiseaseProteinsRNARecoveryReporterRetinaRetinal DiseasesRetinal DystrophyRetinitis PigmentosaSamplingStructure of retinal pigment epitheliumTestingTherapeuticTherapeutic InterventionValidationVariantVitelliform macular dystrophydesigndisease phenotypegene correctiongenome analysisgenome editingimprovedinduced pluripotent stem cellmaculamutantopen sourcepreservationregenerativeretinal progenitor celltherapeutic genome editingtool
项目摘要
PROJECT ABSTRACT
Progressive retinal dystrophies, including retinitis pigmentosa and macular degeneration, are frequently
caused by dominant negative mutations in which the disease could be cured by the silencing the mutant allele.
Until recently, this task was impossible. However, the advent of CRISPR/Cas9 genome editing raises the
exciting possibility of curing the disease by selectively inactivating the dominant disease-causing allele, while
preserving the normal allele. As a proof-of-concept, we will focus on bestrophin, a protein encoded by the
BEST1 gene that forms a calcium-activated chloride channel expressed in the retinal pigment epithelium
(RPE). The most common BEST1-related disease is called “Best disease” (BD), which is caused by >200
different dominant-negative protein coding mutations that result in defective chloride channel function, sub-
retinal lipid accumulation, and macular atrophy. Induced pluripotent stem cells (iPSCs) from BD patients
develop into RPE with disease phenotypes, such as abnormal chloride channel conductance and bestrophin
mislocalization. DNA excision with dual cutting Cas9 is remarkably efficient, and by targeting Cas9 with guide
RNAs (gRNA) to common polymorphisms on the same allele as (in cis with) the disease mutation, we propose
to eliminate the disease protein. By targeting common polymorphisms, we hope to treat a majority of BD
patients with just a few gRNA pairs. Although therapeutic editing for BD is promising, many daunting
challenges remain. 1. How can we be confident that inactivation of the disease allele will cure the disease? 2.
How do we efficiently identify polymorphisms in cis within a 20-30 kb genomic window that can be used for
dual Cas9 excision of one allele, while leaving the other allele intact? (Fig. 5). 3. What are the ideal methods to
introduce editing DNA/RNA/proteins into RPE for efficient and specific editing? 4. How do we assess the off-
target editing for different SNPs and different methods of inserting Cas9 into cells? 5. Can we minimize off-
target DNA damage using alternative forms of Cas9? We will systematically address each of these questions
with a combination of bioinformatics, cell biology, and bioengineering with these aims:
Aim 1. Determine the efficacy of allele-specific editing and the rescue of BD-associated RPE phenotypes
using fluorescent reporter iPSCs
Aim 2. Test allele-specific gRNAs for inactivation of disease alleles in RPE from 10 BD patients
Aim 3. Determine the fidelity of the most robust allele-specific editing
BD is a fertile testing ground for therapeutic editing, since RPE can readily be derived from iPSCs for in vitro
studies, and is already the target of cell and gene therapy trials. Our studies also have larger implications: our
methods are applicable to any dominant negative genetic disease where the selective removal of a single
allele could be therapeutic. For instance, dominant negative disease of photoreceptors (e.g., RHO), auditory
cells, nervous system, and muscle, are potential targets in the future.
项目摘要
进行性视网膜营养不良,包括色素性视网膜炎和黄斑变性,
由显性负突变引起,这种疾病可以通过沉默突变等位基因来治愈。
直到最近,这项任务都是不可能完成的。然而,CRISPR/Cas9基因组编辑的出现提高了
通过选择性地使主要致病等位基因失活来治愈疾病的可能性令人兴奋,
保留正常的等位基因作为一个概念验证,我们将重点放在bestrophin上,这是一种由
在视网膜色素上皮细胞中表达的形成钙激活氯离子通道的BEST 1基因
(RPE)。最常见的BEST 1相关疾病被称为“最佳疾病”(BD),其由>200
不同的显性负性蛋白编码突变导致氯离子通道功能缺陷,亚
视网膜脂质积聚和黄斑萎缩。来自BD患者的诱导多能干细胞(iPSC)
发展成具有疾病表型的RPE,如异常氯通道传导和雌激素样蛋白
错误定位用双切割Cas9进行DNA切除是非常有效的,并且通过用引导物靶向Cas9,
我们提出,将RNA(gRNA)与疾病突变相同等位基因上的常见多态性(顺式)联系起来,
以消除疾病蛋白质。通过针对常见的多态性,我们希望治疗大多数BD
只有几对gRNA的患者。虽然BD的治疗编辑是有希望的,但许多令人生畏的
挑战依然存在。1.我们如何能确信,疾病等位基因的失活将治愈疾病?2.
我们如何在20-30 kb的基因组窗口内有效地识别cis中的多态性,
一个等位基因的双Cas9切除,而另一个等位基因保持完整?(Fig.(五)。3.什么是理想的方法,
将编辑DNA/RNA/蛋白质引入RPE以进行高效和特异性编辑?4.我们如何评估-
针对不同SNP的靶向编辑和将Cas9插入细胞的不同方法?5.我们能不能尽量减少-
使用Cas9的替代形式靶向DNA损伤?我们将系统地解决这些问题中的每一个
结合生物信息学、细胞生物学和生物工程学,其目标是:
目标1。确定等位基因特异性编辑的功效和BD相关RPE表型的拯救
使用荧光报告基因iPSC
目标2.测试来自10名BD患者的RPE中疾病等位基因的失活的等位基因特异性gRNA
目标3。确定最稳健的等位基因特异性编辑的保真度
BD是用于治疗性编辑的肥沃的试验场,因为RPE可以容易地衍生自iPSC用于体外培养。
研究,并且已经是细胞和基因治疗试验的目标。我们的研究也有更大的影响:我们的
方法适用于任何显性阴性遗传疾病,其中选择性去除单个
等位基因可能有治疗作用。例如,光感受器的显性负性疾病(例如,RHO),听觉
细胞、神经系统和肌肉是未来的潜在目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce R Conklin其他文献
Dual α-globin and truncated EPO receptor knockin restores hemoglobin production in α-thalassemia-derived red blood cells
双 α-珠蛋白和截短的 EPO 受体敲入可恢复 α-地中海贫血来源的红细胞中血红蛋白的产生
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Simon N. Chu;E. Soupene;B. Wienert;Han Yin;Devesh Sharma;Travis McCreary;Kun Jia;Shota Homma;Jessica P. Hampton;James M. Gardner;Bruce R Conklin;T. Mackenzie;M. Porteus;M. Cromer - 通讯作者:
M. Cromer
Bruce R Conklin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce R Conklin', 18)}}的其他基金
C9orf72 frontotemporal dementia (FTD) and amyotrophic lateral sclerosis(ALS): using patient cells and CRISPR to reveal therapeutic approaches
C9orf72 额颞叶痴呆 (FTD) 和肌萎缩侧索硬化症 (ALS):利用患者细胞和 CRISPR 揭示治疗方法
- 批准号:
10590420 - 财政年份:2021
- 资助金额:
$ 42.48万 - 项目类别:
C9orf72 frontotemporal dementia (FTD) and amyotrophic lateral sclerosis(ALS): using patient cells and CRISPR to reveal therapeutic approaches
C9orf72 额颞叶痴呆 (FTD) 和肌萎缩侧索硬化症 (ALS):利用患者细胞和 CRISPR 揭示治疗方法
- 批准号:
10186371 - 财政年份:2021
- 资助金额:
$ 42.48万 - 项目类别:
Human microtissues for in situ detection and functional measurement of adverse consequences caused by genome editing
用于原位检测和功能测量基因组编辑引起的不良后果的人体微组织
- 批准号:
10249959 - 财政年份:2018
- 资助金额:
$ 42.48万 - 项目类别:
Human microtissues for in situ detection and functional measurement of adverse consequences caused by genome editing
用于原位检测和功能测量基因组编辑引起的不良后果的人体微组织
- 批准号:
10455604 - 财政年份:2018
- 资助金额:
$ 42.48万 - 项目类别:
JAX-Gladstone, SCGE Disease Models Studies Supplement
JAX-Gladstone,SCGE 疾病模型研究补充材料
- 批准号:
10620067 - 财政年份:2018
- 资助金额:
$ 42.48万 - 项目类别:
Protein quality control, cardiomyopathy, cardiotoxicity and human isogenic iPSCs
蛋白质质量控制、心肌病、心脏毒性和人类同基因 iPSC
- 批准号:
9930312 - 财政年份:2017
- 资助金额:
$ 42.48万 - 项目类别:
Protein quality control, cardiomyopathy, cardiotoxicity and human isogenic iPSCs
蛋白质质量控制、心肌病、心脏毒性和人类同基因 iPSC
- 批准号:
9384644 - 财政年份:2017
- 资助金额:
$ 42.48万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 42.48万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 42.48万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 42.48万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 42.48万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 42.48万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 42.48万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 42.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 42.48万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 42.48万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 42.48万 - 项目类别: