Novel Carbon Nanozyme Mechanisms for Traumatic Brain Injury
治疗创伤性脑损伤的新型碳纳米酶机制
基本信息
- 批准号:9981393
- 负责人:
- 金额:$ 50.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Activated CharcoalAcuteAcute Brain InjuriesAddressAgingAntioxidantsBinding SitesBlood - brain barrier anatomyCarbonCarbon nanoparticleCell AgingCellsCharacteristicsChelating AgentsChemicalsChronic DiseaseClinicCoalComplexContusionsDNA DamageDNA Double Strand BreakDeferoxamineDiseaseElectron TransportEnvironmentEnzymesEventFree RadicalsFundingGenerationsGenomicsGoalsHeminHemoglobinHemorrhageHumanImpaired cognitionIn VitroInflammationInjuryIronIron Chelating AgentsLesionLinkMaterials TestingMediator of activation proteinMitochondriaModelingNatureNervous System PhysiologyNeuronsNuclear AccidentsOutcomeOxidation-ReductionOxidative PhosphorylationOxidesPathologicPathologyPathway interactionsPatientsPharmaceutical PreparationsPhenotypeQuantum DotsQuinonesResistanceRodentRoleSiteSourceSpeedSuperoxide DismutaseTestingTherapeuticTherapeutic UsesTissuesToxic effectTraumatic Brain InjuryWorkbasecarboxylatecovalent bonddesigndisabilityethylene glycolfunctional declinefunctional outcomesfunctional restorationgraphenehydrophilicityimprovedin vivoin vivo Modellead candidatemild traumatic brain injurymimeticsmitochondrial dysfunctionnanomaterialsnanoparticlenew therapeutic targetnovelnovel therapeuticsoxidative damagepreventresponsesenescence
项目摘要
Abstract: In the prior funding cycle, we successfully obtained a mechanistic understanding of the chemical basis
for the excellent therapeutic actions in mild traumatic brain injury (TBI) of our carbon nanoparticle (CNP) platform,
poly(ethylene)glycol-hydrophilic carbon clusters (PEG-HCCs). We identified new actions that point to profound
new directions for our CNPs. We: 1) discovered that the HCC's broad redox potential extended their action as
a redox mediator among mitochondrial constituents involved in electron transport, i.e. a nanoparticle enzyme, or
“nanozyme”, and 2) identified a new mechanism by which hemorrhage causes cellular toxicity: rapid and
persistent generation of DNA double strand breaks and robust DNA damage response leading to cellular
“senescence”, in which cells become a nidus for inflammation. While senescence could be prevented by PEG-
HCCs, the cells became sensitized to iron toxicity/ferroptosis. This interaction led us to generate a new CNP,
covalently bonding iron chelator, deferoxamine (DEF). Our results indicate DEF-HCC-PEG effectively
addressed hemin and iron-related injury, senescence and ferroptosis. Given that mitochondrial dysfunction and
hemorrhagic contusion (HC) are associated with poor outcome in TBI, these findings directly indicate the benefit
of pursuing these mechanisms. The identification of key mechanistic features of our CNP platform that facilitate
a mitochondrial site of action and new mechanism of hemorrhage-induced pathology form the basis for this
renewal application. We will incorporate our understanding of the PEG-HCC mechanisms of action to generate
a more immediately translatable CNP utilizing a good manufacturing practice (GMP) starting material, activated
charcoal, and test them in-vivo in a rodent TBI with hemorrhagic contusion (TBI/HC). Our overall hypothesis
is that the mechanisms of action discovered in our prior application will be translatable to GMP starting materials
and will act on both the genomic and mitochondrial damage associated with TBI/HC. Specific Aim 1 will test the
hypothesis that an oxidizing synthesis environment can be optimized to generate GMP-derived starting
materials, PEG-oxidized activated charcoal achieving, the desired characteristics of a CNP nanozyme. Specific
Aim 2 will test the hypothesis that DEF-linked CNP will address hemorrhage-related mitochondrial and genomic
events triggering senescence and resistance to ferroptosis. Specific Aim 3 will administer the CNPs developed
in Aims 1 and 2 to moderate-severe TBI/HC model. Completion of these Aims will yield a more readily
translatable version of our CNP platform building on a growing understanding of the critical features and sites of
action for their nanozyme mechanisms. New therapeutic targets emerging from a more thorough understanding
of pathological mechanisms by which hemorrhage complicates outcome from TBI will guide the design. By
employing GMP starting material, this project can generate breakthrough materials more rapidly translatable to
the clinic. Because mitochondrial dysfunction and the cellular consequence of hemorrhage are features both of
acute injury and of aging and cognitive decline, a broader potential for this therapy is suggested.
翻译后摘要:在前一个资金周期,我们成功地获得了化学基础的机械理解
对于我们的碳纳米颗粒(CNP)平台在轻度创伤性脑损伤(TBI)中的优异治疗作用,
聚乙二醇-亲水性碳簇(PEG-HCCs)。我们确定了新的行动,
新的发展方向我们:1)发现HCC的宽氧化还原电位延长了它们的作用,
参与电子传递的线粒体成分中的氧化还原介体,即纳米颗粒酶,或
“纳米酶”,和2)确定了一种新的机制,出血引起细胞毒性:快速和
持续产生DNA双链断裂和强大的DNA损伤反应,导致细胞
“衰老”,其中细胞成为炎症的病灶。而PEG-2能延缓衰老,
在HCC中,细胞变得对铁毒性/铁凋亡敏感。这种相互作用使我们产生了一种新的CNP,
共价键合铁螯合剂,去铁胺(DEF)。我们的结果表明,DEF-HCC-PEG有效地
论述了氯化血红素和铁相关的损伤、衰老和铁凋亡。考虑到线粒体功能障碍和
出血性挫伤(HC)与TBI的不良结局相关,这些发现直接表明了
去追求这些机制。我们的CNP平台的关键机制特征的识别,
线粒体的作用位点和新的损伤诱导病理机制形成了这一基础
续期申请。我们将结合我们对PEG-HCC作用机制的理解,
采用良好生产规范(GMP)起始物料的更直接可转化CNP,活化
活性炭,并在具有出血性挫伤的啮齿动物TBI(TBI/HC)中进行体内测试。我们的总体假设
在我们之前的申请中发现的作用机制将可转化为GMP起始物料
并将作用于与TBI/HC相关的基因组和线粒体损伤。具体目标1将测试
假设氧化合成环境可以被优化以产生GMP衍生的起始物质,
材料,PEG-氧化活性炭实现CNP纳米酶的所需特性。具体
目的2将检验DEF-连锁CNP将解决衰老相关线粒体和基因组损伤的假设。
引发衰老和抗铁凋亡的事件。具体目标3将管理制定的CNPs
在目的1和2中,对中度-重度TBI/HC模型。完成这些目标将更容易产生
我们的CNP平台的可翻译版本建立在对关键功能和网站的日益了解之上,
nanozyme机制。新的治疗靶点从更深入的了解中出现
出血使TBI结果复杂化的病理机制将指导设计。通过
采用GMP起始材料,该项目可以更快地产生突破性材料,
诊所因为线粒体功能障碍和出血的细胞后果都是
急性损伤和老化和认知能力下降,这种疗法的更广泛的潜力建议。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Muralidhar L Hegde其他文献
Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells
哺乳动物细胞中 DNA 碱基切除/单链断裂修复途径的早期步骤
- DOI:
10.1038/cr.2008.8 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:25.900
- 作者:
Muralidhar L Hegde;Tapas K Hazra;Sankar Mitra - 通讯作者:
Sankar Mitra
Muralidhar L Hegde的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Muralidhar L Hegde', 18)}}的其他基金
Defining the altered FUS-PARP-1-DNA Ligase III axis and its implications to nuclear and mitochondrial genome damage response in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD)
定义改变的 FUS-PARP-1-DNA 连接酶 III 轴及其对肌萎缩侧索硬化症 (ALS) 和额颞叶痴呆 (FTD) 中核和线粒体基因组损伤反应的影响
- 批准号:
9980670 - 财政年份:2020
- 资助金额:
$ 50.48万 - 项目类别:
Novel Carbon Nanozyme Mechanisms for Traumatic Brain Injury
治疗创伤性脑损伤的新型碳纳米酶机制
- 批准号:
10598021 - 财政年份:2015
- 资助金额:
$ 50.48万 - 项目类别:
Novel Carbon Nanozyme Mechanisms for Traumatic Brain Injury
治疗创伤性脑损伤的新型碳纳米酶机制
- 批准号:
10397400 - 财政年份:2015
- 资助金额:
$ 50.48万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 50.48万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 50.48万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 50.48万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 50.48万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 50.48万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 50.48万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 50.48万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 50.48万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 50.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 50.48万 - 项目类别:
Operating Grants