An HXYZ-g HR-Fast-MAS probe for Dramatically Improved Biomolecular Structure Determinations
用于显着改进生物分子结构测定的 HXYZ-g HR-Fast-MAS 探针
基本信息
- 批准号:9988618
- 负责人:
- 金额:$ 64.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAmyloid beta-ProteinAreaBiologicalBiomedical ResearchBudgetsCOSYCaliberCatalysisCellular MembraneComplexDataDepositionDetectionDevelopmentDiffusionEquipmentFundingGoalsHealthInferiorLaboratoriesLiquid substanceMagicMagnetismMeasurementMembrane ProteinsMetabolismMethodsModelingMolecularMolecular WeightMotionNMR SpectroscopyNeurologyNuclearNuclear Magnetic ResonancePerformancePhasePhysiologic pulsePlatelet Factor 4PriceProteinsProtocols documentationPublishingRF coilResearch PersonnelResolutionSamplingSchemeSideSolidSolventsSonicationSpeedStructural ProteinStructureSurfaceSystemTechniquesTechnologyTimeWidthbasedata warehousedesignexperimental studyimprovedinnovationinsightinterestirradiationmacromoleculematerials sciencemicrowave electromagnetic radiationnext generationnoveloperationprotein structuresolid state nuclear magnetic resonancestructural biologytoolvibrationvirtual
项目摘要
An HXYZ-g HR-Fast-MAS probe for Dramatically Improved Biomolecular Structure Determinations
Abstract.
Liquid state NMR spectroscopy is arguably one of the best tools for structure determination for soluble
proteins. The method provides atomic resolution for modest molecular weight proteins and/or their complexes.
The method begins to have difficulty when the molecular weight of the system causes slow molecular motion,
which in turn increases the linewidth beyond the point of useful resolution. Solid state NMR (ssNMR) methods
have progressed remarkably over the past 15 years to permit improved resolution for these conditions, but they
still come well short of the goal of liquid-like resolution on biological macromolecules, such as membrane
proteins and the fibrils that are central to Alzheimer’s Disease. The “Holy Grail” in ssNMR would be the ability
to successfully utilize the powerful suite of NMR acquisition and automated structure determination protocols
developed for solution NMR, which rely on ¹H-detected triple- and quad-resonance ²H-decoupled schemes (as
such generally permit 8 or 30 times higher S/N than direct detection, for ¹³C and¹⁵5N respectively) with solid
samples of 1-10 mg.
The main objective of this Phase II application is to complete the development a four-channel
multinuclear ssNMR probe (HXYZ) that has the capability of providing ¹³C/¹⁵N/¹H correlations under ²H
decoupling utilizing modest (15 kHz) to fast (> 35 kHz) Magic Angle Spinning (MAS) while detecting ¹H. The
resulting resolution, particularly with proposed novel pulse sequences, will be close to that of a typical liquid
state experiment on proteins.
Four-channel multinuclear probes with gradients have been the workhorse in solution NMR for
decades, but they have not been available for ssNMR – they have been perceived to be impractically difficult to
design and build. The Phase-I demonstrated feasibility of an H/X/Y/Z narrow-bore (NB) MAS probe based on
a novel “single-coil” rf circuit optimized for ¹H detection and suitable for use at fields from 7-31 T. The Phase-II
probe will be compatible with automated sample exchange, pulsed-field gradients (PFG), NB magnets, and
novel NB microwave irradiation methods for Dynamic Nuclear Polarization (DNP).
Calculations suggest ²H J-couplings contribute 5-10 Hz to the remaining ¹H line broadening in rigid
proteins, and available data suggest the probe-limited resolution (from thermal gradients and magnetism) in
commercially available fast-MAS probes has contributed another 6-25 Hz. A 4-channel MAS probe with order-
of-magnitude lower thermal gradients that is capable of 2 Hz ¹H resolution on liquids is expected to enable ¹H
linewidths below 0.01 ppm on most of the residues in rigid proteins at 900 MHz and above. The novel circuit
will also be tunable to virtually all combinations of interest, such as ¹H/¹³C/²H/¹⁵N, ¹H/³¹P/¹³C/²H, ¹H/³¹P/⁷Li/¹³C,
¹H/²⁷Al/²⁹Si/¹⁷O, and ¹H/¹³C/²⁹Si/¹⁰³Rh, thereby making it also invaluable in such areas as metabolism,
neurology, materials science, catalysis, and sustainable energy.
用于显着改进生物分子结构测定的 HXYZ-g HR-Fast-MAS 探针
抽象的。
液态核磁共振波谱可以说是测定可溶性物质结构的最佳工具之一。
蛋白质。该方法为中等分子量的蛋白质和/或其复合物提供原子分辨率。
当系统的分子量导致分子运动缓慢时,该方法开始出现困难,
这反过来又增加了线宽,超出了有用的分辨率点。固态核磁共振 (ssNMR) 方法
在过去 15 年中,在改善这些情况的解决方案方面取得了显着进展,但它们
仍然距离生物大分子(例如膜)类似液体分辨率的目标有很大差距
蛋白质和原纤维是阿尔茨海默病的核心。 ssNMR 中的“圣杯”是能力
成功利用强大的 NMR 采集和自动结构测定协议套件
为溶液 NMR 开发,依赖于 1H 检测的三重和四重共振 2H 解耦方案(如
对于 13C 和 155N),这种方法通常比直接检测的信噪比高 8 或 30 倍
1-10 mg 样品。
该二期应用的主要目标是完成四通道的开发
多核 ssNMR 探针 (HXYZ),能够在 2H 下提供 13C/15N/1H 相关性
在检测 1H 时利用适度 (15 kHz) 到快速 (> 35 kHz) 魔角旋转 (MAS) 进行去耦。这
由此产生的分辨率,特别是所提出的新型脉冲序列,将接近于典型液体的分辨率
蛋白质国家实验。
具有梯度的四通道多核探针一直是溶液 NMR 的主力
几十年来,但它们还没有可用于 ssNMR——它们被认为是不切实际的困难
设计和建造。第一阶段展示了基于 H/X/Y/Z 窄孔 (NB) MAS 探头的可行性
一种新颖的“单线圈”射频电路,针对 1H 检测进行了优化,适用于 7-31 T 的场。
探头将与自动样品交换、脉冲场梯度 (PFG)、NB 磁铁和
用于动态核极化 (DNP) 的新型 NB 微波辐射方法。
计算表明 ²H J 联轴器对刚性中剩余的 1H 线加宽贡献了 5-10 Hz
蛋白质和可用数据表明探针有限的分辨率(来自热梯度和磁性)
商用快速 MAS 探头又贡献了 6-25 Hz 的频率。一个 4 通道 MAS 探头,具有阶
数量级较低的热梯度能够在液体上实现 2 Hz 1H 分辨率,预计将能够实现 1H
在 900 MHz 及以上频率下,刚性蛋白质中大多数残基的线宽低于 0.01 ppm。新颖的电路
也可调谐到几乎所有感兴趣的组合,例如 1H/13C/2H/15N、1H/31P/13C/2H、1H/31P/7Li/13C、
1H/27Al/2⁹Si/17O 和 1H/13C/29Si/103Rh,从而使其在新陈代谢等领域也具有无价的价值,
神经学、材料科学、催化和可持续能源。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francis DAVID Doty其他文献
Francis DAVID Doty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francis DAVID Doty', 18)}}的其他基金
Ultra-low-temperature (6 K) static NMR-DNP for metalloproteins, proteins in cells, and materials
用于金属蛋白、细胞中蛋白质和材料的超低温 (6 K) 静态 NMR-DNP
- 批准号:
10546201 - 财政年份:2023
- 资助金额:
$ 64.31万 - 项目类别:
A Novel Waveguide to Enable MAS-DNP-NMR in Standard-bore High-field Magnets
一种新型波导,可在标准孔径高场磁体中实现 MAS-DNP-NMR
- 批准号:
10081009 - 财政年份:2020
- 资助金额:
$ 64.31万 - 项目类别:
A Novel Waveguide to Enable MAS-DNP-NMR in Standard-bore High-field Magnets
一种新型波导,可在标准孔径高场磁体中实现 MAS-DNP-NMR
- 批准号:
10602643 - 财政年份:2020
- 资助金额:
$ 64.31万 - 项目类别:
A Reliable Switched Angle Spinning (SAS) Probe with Gradients (PFG) for Proteins in Solid-State NMR
用于固态 NMR 中蛋白质的可靠的带梯度 (PFG) 的转角旋转 (SAS) 探针
- 批准号:
10456218 - 财政年份:2018
- 资助金额:
$ 64.31万 - 项目类别:
A Reliable Switched Angle Spinning (SAS) Probe with Gradients (PFG) for Proteins in Solid-State NMR
用于固态 NMR 中蛋白质的可靠的带梯度 (PFG) 的转角旋转 (SAS) 探针
- 批准号:
10667507 - 财政年份:2018
- 资助金额:
$ 64.31万 - 项目类别:
A Reliable Switched Angle Spinning (SAS) Probe with Gradients (PFG) for Proteins in Solid-State NMR
用于固态 NMR 中蛋白质的可靠的带梯度 (PFG) 的转角旋转 (SAS) 探针
- 批准号:
10325061 - 财政年份:2018
- 资助金额:
$ 64.31万 - 项目类别:
A Novel Millimeter-wave (mmw) DNP/EPR Front-end Compatible with Versatile High-field NMR Probes
与多功能高场 NMR 探头兼容的新型毫米波 (mmw) DNP/EPR 前端
- 批准号:
9343460 - 财政年份:2017
- 资助金额:
$ 64.31万 - 项目类别:
An H/F/X/Y Fast-MAS NMR Probe Particularly for Alzheimer's and Cancer Research
特别适用于阿尔茨海默病和癌症研究的 H/F/X/Y Fast-MAS NMR 探针
- 批准号:
9908407 - 财政年份:2016
- 资助金额:
$ 64.31万 - 项目类别:
A Quad-Fast-MAS probe for Dramatically Improved Biomolecular Structure Determinations
用于显着改进生物分子结构测定的 Quad-Fast-MAS 探针
- 批准号:
9045315 - 财政年份:2016
- 资助金额:
$ 64.31万 - 项目类别:
An H/F/X/Y Fast-MAS NMR Probe Particularly for Alzheimer's and Cancer Research
特别适用于阿尔茨海默病和癌症研究的 H/F/X/Y Fast-MAS NMR 探针
- 批准号:
10224643 - 财政年份:2016
- 资助金额:
$ 64.31万 - 项目类别:
相似国自然基金
新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
- 批准号:81000622
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
- 批准号:31060293
- 批准年份:2010
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
- 批准号:30960334
- 批准年份:2009
- 资助金额:22.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
- 批准号:
10657993 - 财政年份:2023
- 资助金额:
$ 64.31万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10381163 - 财政年份:2022
- 资助金额:
$ 64.31万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10531959 - 财政年份:2022
- 资助金额:
$ 64.31万 - 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
- 批准号:
10700991 - 财政年份:2022
- 资助金额:
$ 64.31万 - 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10518582 - 财政年份:2022
- 资助金额:
$ 64.31万 - 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
- 批准号:
10672973 - 财政年份:2022
- 资助金额:
$ 64.31万 - 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
- 批准号:
10585925 - 财政年份:2022
- 资助金额:
$ 64.31万 - 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
- 批准号:
10180000 - 财政年份:2021
- 资助金额:
$ 64.31万 - 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
- 批准号:
10049426 - 财政年份:2021
- 资助金额:
$ 64.31万 - 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
- 批准号:
10295809 - 财政年份:2021
- 资助金额:
$ 64.31万 - 项目类别:














{{item.name}}会员




