Kinetic regulation of mycobacterial transcription
分枝杆菌转录的动力学调控
基本信息
- 批准号:9982385
- 负责人:
- 金额:$ 39.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal ModelBacteriaBindingBiochemical PathwayBiological AssayBiological ModelsBiologyBiophysical ProcessBiophysicsCessation of lifeChromosomesComplexDNADNA BindingDNA-Directed RNA PolymeraseDataDevelopmentDiseaseDrug resistanceElementsEscherichia coliFutureGene ExpressionGenesGenetic TranscriptionGenus MycobacteriumHealthHoloenzymesHousekeepingHypoxiaIn VitroIndividualInfectionKineticsLeadMeasuresMediatingModelingMolecularMulti-Drug ResistanceMultidrug-Resistant TuberculosisMycobacterium tuberculosisOutcomeOxidative StressPF4 GenePathogenesisPathogenicityPeptide Initiation FactorsPlayPredictive FactorProductionPromoter RegionsPropertyPublic HealthRNARNA Polymerase InhibitorRegulationReportingRepressionResolutionRibosomal RNARoleSecuritySigma FactorSpecificityStarvationStressTechniquesTestingTherapeuticTimeTranscriptTranscription InitiationTranscriptional RegulationTuberculosisWorkWorld Health Organizationbasebiological adaptation to stresscombatdrug discoveryexperienceexperimental studygenome-wideglobal healthhuman pathogenin vivoinnovationinsightkinetic modelmycobacterialnovel therapeuticspromoterresistant strainresponsesingle moleculestop flow techniquetranscription factortranscriptome sequencing
项目摘要
PROJECT SUMMARY/ABSTRACT
Transcription in all bacteria is achieved by a single core RNA polymerase (RNAP) which associates with
a σ-subunit to form an RNAP holoenzyme, bind DNA promoter sequences, and initiate transcription. Most
transcriptional regulation occurs at the level of initiation and transcription factors mediate this regulation by
directly modulating the interaction between RNAP and the promoter, manipulating the rates of interconversion
between closed and open RNAP-promoter complexes (RPc and RPo respectively), or affecting the rate of
promoter escape. We have recently shown that transcription in Mycobacterium tuberculosis (Mtb) is considerably
different from that in the model bacterium E. coli in that Mtb RNAP forms inherently unstable RPo complexes as
compared to E. coli RNAP. Furthermore, Mtb possess two essential transcription factors, CarD and RbpA, that
are absent from E. coli. We have previously shown that these factors stabilize mycobacterial RPo, albeit through
different mechanisms, and are able to cooperatively and dramatically change the kinetics of Mtb RNAP RPo
formation such that it mirrors those of E. coli RNAP. We have been studying CarD and RbpA activities in vivo
and in vitro and have proposed kinetic mechanisms for each factor in the context of the housekeeping σA RNAP
holoenzyme on the ribosomal RNA (rRNA) rrnAP3 promoter. Our studies have been instrumental in
understanding the fundamental properties of these essential transcription factors and have revealed insight into
unique properties of Mtb transcription. However, CarD and RbpA activities have only been examined on a handful
of mycobacterial promoters with sequence elements similar to promoters found in E. coli even though in general
Mtb promoters differ considerably from those in E. coli. In addition, CarD has only been studied in the context of
the σA RNAP holoenzyme, despite the importance of the 12 Mtb alternative σ-factors that regulate the bacterias
response to stresses encounter during pathogenesis. Thus, we still do not know how CarD and RbpA affect
expression of the vast majority of genes within the Mtb chromosome and how this regulation contributes to
viability under the conditions Mtb experiences during infection. In this project, we will measure the kinetics of Mtb
initiation using rapid-mixing stopped-flow techniques as well as high-resolution single-molecule approaches to
address how CarD and RbpA differentially affect gene expression from diverse promoters and in the context of
alternative holoenzymes essential for bacterial stress responses enacted during infection. Our Aims are to: (1)
Test the hypothesis that CarD and RbpA can either activate or repress transcription depending on promoter
context, (2) Expand our kinetic model of factor-dependent mycobacterial transcription initiation, and (3)
Determine how CarD and RbpA are influenced by alternative sigma-factors. Completion of these Aims will result
in a holistic view of Mtb transcriptional regulation genome-wide and will expand paradigms of prokaryotic
transcription beyond traditional model systems. These studies will also provide insight into mechanisms of Mtb
pathogenesis that may inform the development of future therapeutic strategies.
项目总结/摘要
所有细菌中的转录都是通过单核RNA聚合酶(RNAP)实现的,RNAP与
α-亚基形成RNAP全酶,结合DNA启动子序列,并启动转录。最
转录调节发生在起始水平,转录因子通过以下方式介导这种调节:
直接调节RNAP和启动子之间的相互作用,
在封闭和开放RNAP-启动子复合物(分别为RPc和RPo)之间,或影响
启动子逃逸。我们最近发现,结核分枝杆菌(Mtb)中的转录显著降低,
与模式菌E. Mtb RNAP形成固有不稳定的RPo复合物,
与E. coli RNAP。此外,结核分枝杆菌具有两个必需的转录因子,CardD和RbpA,
不存在于E.杆菌我们以前已经表明,这些因素稳定分枝杆菌RPo,虽然通过
不同的机制,并能够协同和显着改变Mtb RNAP RPo的动力学
形成,使其反映了那些E。coli RNAP。我们一直在体内研究CardD和RbpA的活性
和体外,并提出了动力学机制,为每个因素的背景下,管家σA RNAP
核糖体RNA(rRNA)rrnAP 3启动子上的全酶。我们的研究有助于
了解这些基本转录因子的基本特性,并揭示了对
结核分枝杆菌转录的独特性质。然而,CardD和RbpA活动仅在少数几个国家进行了检查
分枝杆菌启动子的序列元件与在E.大肠杆菌,尽管一般来说
Mtb启动子与E.杆菌此外,CardD仅在以下背景下进行了研究:
σA RNAP全酶,尽管调节细菌的12 Mtb替代σ因子的重要性
发病过程中遇到的应激反应。因此,我们仍然不知道CardD和RbpA如何影响
Mtb染色体内绝大多数基因的表达以及这种调节如何有助于
Mtb在感染期间经历的条件下的生存能力。在这个项目中,我们将测量结核分枝杆菌的动力学
使用快速混合停流技术以及高分辨率单分子方法引发,
解决如何CardD和RbpA差异影响基因表达从不同的启动子,并在上下文中,
在感染期间,细菌应激反应所必需的替代全酶。我们的目标是:(1)
验证CarD和RbpA可以根据启动子激活或抑制转录的假设
上下文,(2)扩展我们的因子依赖性分枝杆菌转录起始的动力学模型,和(3)
确定CardD和RbpA如何受到替代sigma因子的影响。这些目标的实现将导致
从全基因组Mtb转录调控的整体观点来看,
超越了传统的模型系统。这些研究也将提供深入了解结核病的机制
发病机制,可能会告知未来的治疗策略的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eric A Galburt其他文献
Eric A Galburt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eric A Galburt', 18)}}的其他基金
Molecular Mechanisms of Transcription Initiation and DNA Repair
转录起始和DNA修复的分子机制
- 批准号:
10581660 - 财政年份:2022
- 资助金额:
$ 39.38万 - 项目类别:
Molecular Mechanisms of Transcription Initiation and DNA Repair
转录起始和DNA修复的分子机制
- 批准号:
10797632 - 财政年份:2022
- 资助金额:
$ 39.38万 - 项目类别:
Molecular Mechanisms of Transcription Initiation and DNA Repair
转录起始和DNA修复的分子机制
- 批准号:
10330862 - 财政年份:2022
- 资助金额:
$ 39.38万 - 项目类别:
Kinetic regulation of mycobacterial transcription
分枝杆菌转录的动力学调控
- 批准号:
9810951 - 财政年份:2019
- 资助金额:
$ 39.38万 - 项目类别:
Kinetic regulation of mycobacterial transcription
分枝杆菌转录的动力学调控
- 批准号:
10026742 - 财政年份:2019
- 资助金额:
$ 39.38万 - 项目类别:
INVESTIGATING NOVEL MECHANISMS OF TRANSCRIPTION INITIATION REGULATION IN MYCOBACTERIA
研究分枝杆菌转录起始调控的新机制
- 批准号:
9266954 - 财政年份:2013
- 资助金额:
$ 39.38万 - 项目类别:
INVESTIGATING NOVEL MECHANISMS OF TRANSCRIPTION INITIATION REGULATION IN MYCOBACT
研究 Mycobact 转录起始调控的新机制
- 批准号:
8563329 - 财政年份:2013
- 资助金额:
$ 39.38万 - 项目类别:
INVESTIGATING NOVEL MECHANISMS OF TRANSCRIPTION INITIATION REGULATION IN MYCOBACT
研究 Mycobact 中转录起始调控的新机制
- 批准号:
8695415 - 财政年份:2013
- 资助金额:
$ 39.38万 - 项目类别:
INVESTIGATING NOVEL MECHANISMS OF TRANSCRIPTION INITIATION REGULATION IN MYCOBACT
研究 Mycobact 中转录起始调控的新机制
- 批准号:
8881231 - 财政年份:2013
- 资助金额:
$ 39.38万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 39.38万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 39.38万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 39.38万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 39.38万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 39.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 39.38万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 39.38万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 39.38万 - 项目类别:
Studentship