Computational Core
计算核心
基本信息
- 批准号:10180968
- 负责人:
- 金额:$ 32.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Analytical ChemistryAnimal ModelCRISPR/Cas technologyCaenorhabditis elegansChemicalsChromosome MappingDNADataData SetDatabasesDiseaseGenerationsGenesGeneticGenetic ModelsGenetic VariationGenomeHumanInfrastructureKnowledgeLinkLocationMapsMass Spectrum AnalysisMeasurementMeasuresMechanicsMedicalMetabolic PathwayMethodsModelingMolecularMolecular ConformationMutationOutputPathway interactionsPatternPopulationPreparationRegulationResolutionSamplingScienceSiteStructural ChemistryStructureTestingTimeVariantbasecomputational chemistrycost effectivedata submissionexperimental studygenetic associationgenetic variantgenome wide association studyhuman diseaseimprovedmetabolomemetabolomicsmutantprospectivequantumquantum chemistryrelational databaserepairedrepositorytool
项目摘要
Overall: Our project combines the significant advantages of a genetic model organism, sophisticated pathway
mapping tools, high-throughput and accurate quantum chemistry (QM), and state-of-the-art experimental
measurements. The result will be an efficient and cost-effective approach for unknown compound identification
in metabolomics, which is one of the major limitations facing this growing field of medical science.
Caenorhabditis elegans has several advantages for this study, including over 10,000 available genetic
mutants, well-developed CRISPR/Cas9 technology, and a panel of over 500 wild C. elegans isolates with
complete genomes. Half of C. elegans genes have homologs to human disease genes, making this model
organism an outstanding choice to improve our understanding of metabolic pathways in human disease. We
will develop an automated pipeline for sample preparation to reproducibly measure tens of thousands of
unknown features by UHPLC-MS/MS. We will use the wild isolates to conduct metabolome-wide genetic
association studies (m-GWAS), and SEM-path to locate unknowns in pathways using partial correlations. The
relevance of the unknown metabolites to specific pathways will be tested by measuring UHPLC-MS/MS data
from genetic mutants of those pathways. Molecular formula and pathway information will be the inputs for
automated quantum mechanical calculations of all possible structures, which will be used to accurately
calculate NMR chemical shifts that will be matched to experimental data. The correct structures will be
validated by comparing them with 2D NMR data of the same compound. The validated computed structures
will then be used to improve QM-based MS/MS fragment prediction, using the experimental UHPLC-MS/MS
data.
The Computational Core (CC) will have two primary components, metabolite pathway mapping and quantum
chemical calculations of NMR and MS/MS data. The pathway mapping interfaces with the Experimental Core
in the generation of m-GWAS results from wild isolates and LC-MS/MS analysis. These genetic associations
will relate known metabolites to known genes. These pathways will be expanded by locating unknown features
through partial correlations, which will significantly reduce the chemical space available to the unknowns. QM
calculations will use this pathway information to limit the number of possible structures for a given molecular
formula, which will be obtained by the Experimental Core. The output of the QM calculations will be accurate
NMR chemical shifts on data from the same chromatographic retention times as the LC-MS/MS of the
unknown, allowing us to find the best computed structure. We also will improve computational MS/MS
predictions. All of the experimental and computational data will be added to a relational database, which will
allow us to search any field (e.g. retention time windows, m/z values, etc.). The CC will provide robust
computing infrastructure at two sites, shared notebooks for analysis, and deposition of data to repositories.
总体而言:我们的项目结合了遗传模式生物的显著优势,复杂的途径
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lauren M. MCINTYRE其他文献
Lauren M. MCINTYRE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lauren M. MCINTYRE', 18)}}的其他基金
Rapid evolution of pigmentation in D. melanogaster: from cis regulation to phenotype
黑腹果蝇色素沉着的快速进化:从顺式调控到表型
- 批准号:
10133273 - 财政年份:2021
- 资助金额:
$ 32.48万 - 项目类别:
Rapid evolution of pigmentation in D. melanogaster: from cis regulation to phenotype
黑腹果蝇色素沉着的快速进化:从顺式调控到表型
- 批准号:
10322035 - 财政年份:2021
- 资助金额:
$ 32.48万 - 项目类别:
Rapid evolution of pigmentation in D. melanogaster: from cis regulation to phenotype
黑腹果蝇色素沉着的快速进化:从顺式调控到表型
- 批准号:
10539272 - 财政年份:2021
- 资助金额:
$ 32.48万 - 项目类别:
Allele Specific Regulation of Context Specific GRN
背景特异性 GRN 的等位基因特异性调控
- 批准号:
10254258 - 财政年份:2018
- 资助金额:
$ 32.48万 - 项目类别:
Quantitative Comparisons between genotypes and model species
基因型与模式物种之间的定量比较
- 批准号:
8546427 - 财政年份:2012
- 资助金额:
$ 32.48万 - 项目类别:
Quantitative Comparisons between genotypes and model species
基因型与模式物种之间的定量比较
- 批准号:
8341420 - 财政年份:2012
- 资助金额:
$ 32.48万 - 项目类别:
Quantitative Comparisons between genotypes and model species
基因型与模式物种之间的定量比较
- 批准号:
8883575 - 财政年份:2012
- 资助金额:
$ 32.48万 - 项目类别:
Quantitative Comparisons between genotypes and model species
基因型与模式物种之间的定量比较
- 批准号:
8678952 - 财政年份:2012
- 资助金额:
$ 32.48万 - 项目类别:
Genetic variation of allele-specific transcriptome in Drosophila
果蝇等位基因特异性转录组的遗传变异
- 批准号:
7884921 - 财政年份:2009
- 资助金额:
$ 32.48万 - 项目类别:
Genetic variation of allele-specific transcriptome in Drosophila
果蝇等位基因特异性转录组的遗传变异
- 批准号:
7767758 - 财政年份:2007
- 资助金额:
$ 32.48万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 32.48万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 32.48万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 32.48万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 32.48万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 32.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 32.48万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 32.48万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 32.48万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 32.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 32.48万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




