Real-time non-intrusive workload monitoring-Integration of human factors in surgery training and assessment
实时非侵入式工作量监测——将人为因素融入手术培训和评估
基本信息
- 批准号:9983030
- 负责人:
- 金额:$ 18.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccreditationAdverse eventAlgorithmic SoftwareAlgorithmsAssessment toolAttentionAwarenessCaringCognitiveComplementComplexComputer softwareCoupledEnvironmentEquipmentEventFeedbackFutureHealthHumanImpairmentImprove AccessInterventionJointsKnowledgeLearningLiteratureMachine LearningMeasuresMedicalMentorsMethodsModalityModelingMonitorOperating RoomsOperative Surgical ProceduresOutcomeParticipantPatient-Focused OutcomesPatientsPatternPerformancePhysiologicalPlant RootsPostoperative PeriodProceduresPsyche structurePublic HealthRoboticsSentinelSupervisionSurgeonSurveysSystemTask PerformancesTechniquesTechnologyTechnology AssessmentTeleroboticsTestingTimeTrainingTranslatingWorkWorkloadbasecare deliverycognitive loaddesigndistractionexperienceimprovedindividualized feedbackinnovationmotion sensornew technologynoveloperationpatient safetyprogramsrecruitrobotic trainingsensorsensor technologysimulationsimulation environmentskillsskills trainingtoolvigilancevirtual surgery
项目摘要
Project Summary/Abstract (30 lines)
High physiological and cognitive workload required in de-coupled surgical work demands may have
significant impact on patient outcome, surgical efficacy, and surgical performance. As novel surgical
techniques, e.g., telesurgery, are developed, surgical operations will become more complex and the mental
and physical demand on surgeons will likely increase, making it critical to develop remote and connected
workload monitoring methods for the safe and effective surgical procedure design, testing, and training. This
work will implement novel technology and machine learning analytics to quantify real-time and remote
workload and test how workload feedback can impact care delivery in both in telesurgery and surgical
simulation environments. Our overall hypothesis is that connected sensing technology in telesurgical
procedures and simulation can improve surgical training and understanding of the impact of their workload on
performance; ultimately improving patient health, surgery efficacy, and patient access (e.g., tele-mentoring) to
surgical care. Two specific aims are proposed to investigate this hypothesis.
The objective of Specific Aim 1 is to develop a connected sensor system to objectively quantify
workload real-time in simulated telerobotic procedures. This involves: 1) integrating non-intrusive sensors into
a single system within the simulation trainer or environment, 2) training machine learning techniques to
objectively distinguish workload using a simulated surgical skills tasks, and 3) validating metrics across varying
levels of cognitive loads under various task difficulty with medical trainees and expert participants.
The objective of Specific Aim 2 is to determine the impact of the real-time workload feedback
intervention on trainee performance times, errors, and intraoperative workload. Two tasks are proposed: 1)
Explore modalities preferred by surgeons for providing real-time feedback on workload and 2) Assess impact
of workload feedback on task performance and learning. Our primary hypothesis is that performance times and
errors will improve when participants are provided realtime feedback on workload compared to performance
with no feedback.
The expected deliverables include 1) workload monitoring technology, algorithms, and software for
complementing current simulation-based training, 2) objective and automated workload metrics, 3) real-time
assistive intervention tool, and 4) preliminary evidence on impact of workload monitoring on training. The
technology in this proposed work will improve public health by reducing adverse events due to human factors
in surgery and improve access to surgical care with intervention technology that can adaptively train surgeons
and remotely assess proficiency.
项目概要/摘要(30行)
解耦手术工作要求中所需的高生理和认知工作负荷可能具有
对患者结局、手术疗效和手术性能有显著影响。作为新型外科手术
可以使用各种技术,随着外科手术的发展,外科手术将变得更加复杂,
对外科医生的身体需求可能会增加,这使得开发远程和联网技术变得至关重要。
安全有效的外科手术设计、测试和培训的工作负荷监测方法。这
工作将实施新技术和机器学习分析来量化实时和远程
工作量和测试工作量反馈如何影响外科和外科的护理提供
仿真环境。我们的总体假设是,外科手术中的连接传感技术
程序和模拟可以提高手术培训和理解他们的工作量的影响,
性能;最终改善患者健康、手术疗效和患者进入(例如,远程指导),
外科护理。两个具体的目标,提出了调查这一假设。
具体目标1的目标是开发一个连接的传感器系统,以客观地量化
工作量实时模拟远程机器人程序。这涉及:1)将非侵入式传感器集成到
模拟训练器或环境内的单个系统,2)训练机器学习技术,
使用模拟的手术技能任务客观地区分工作负荷,以及3)验证不同的
不同任务难度下的认知负荷水平。
具体目标2的目标是确定实时工作负载反馈的影响
对受训者的操作时间、错误和术中工作量进行干预。提出了两项任务:1)
探索外科医生首选的模式,以提供关于工作负荷的实时反馈; 2)评估影响
对任务表现和学习的反馈。我们的主要假设是,
当向参与者提供关于工作量与绩效的实时反馈时,错误将得到改善
没有反馈
预期的交付成果包括:1)工作负载监控技术、算法和软件,
补充当前基于模拟的培训,2)客观和自动化的工作量指标,3)实时
辅助干预工具; 4)工作量监测对培训影响的初步证据。的
这项拟议工作中的技术将通过减少人为因素引起的不良事件来改善公共卫生
在外科手术中,并通过可以自适应地培训外科医生的介入技术来改善获得外科护理的机会
远程评估熟练程度
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A neurotechnological aid for semi-autonomous suction in robotic-assisted surgery.
- DOI:10.1038/s41598-022-08063-w
- 发表时间:2022-03-16
- 期刊:
- 影响因子:4.6
- 作者:Barragan JA;Yang J;Yu D;Wachs JP
- 通讯作者:Wachs JP
Physiological Metrics of Surgical Difficulty and Multi-Task Requirement during Robotic Surgery Skills.
- DOI:10.3390/s23094354
- 发表时间:2023-04-28
- 期刊:
- 影响因子:0
- 作者:Lim C;Barragan JA;Farrow JM;Wachs JP;Sundaram CP;Yu D
- 通讯作者:Yu D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Denny Yu其他文献
Denny Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 18.31万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 18.31万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 18.31万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 18.31万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 18.31万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 18.31万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 18.31万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 18.31万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 18.31万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 18.31万 - 项目类别:














{{item.name}}会员




