Brain Registration and Histology

脑登记和组织学

基本信息

  • 批准号:
    9983195
  • 负责人:
  • 金额:
    $ 16.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-28 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary: Core 4, Brain Registration and Pathway Tracing    Working memory, the ability to temporarily hold multiple pieces of information in mind for manipulation, is  central to virtually all cognitive abilities. This multi-component research project aims to comprehensively  dissect the neural circuit mechanisms of this ability across multiple brain areas. The behavior to be studied is  a type of decision-making task that is based on the gradual accumulation of sensory evidence and thus relies  on working memory. A full understanding of how this behavior relates to this brain function requires  explanation at multiple levels: from neural activity in particular regions to how those regions interact in  brain-wide networks via specific pathways. These levels of analysis require distinct technical approaches,  which are often difficult to relate to one another rigorously. This Core will promote rigor and reproducibility in  the proposed research by producing an anatomical framework to standardize and compare the various types  of data that will be collected. The facility will serve several essential functions in building a broad integrative  structure for the project. First, it will produce standardized functional maps that will be used to accurately  determine the boundaries of visual cortical regions before cellular-resolution imaging or inactivation studies.  Second, it will register all studied brain areas into an anatomical context that includes connectivity and  functional significance. Automated cell-recognition methods will be used to survey directly imaged regions  and indirectly connected regions, and to classify neurons and other objects of interest. Third, it will support  long-distance tracing across synapses to identify paths of connectivity between distant brain regions involved  in evidence accumulation. Fourth, it will organize this information in a relational database that links all the  experiments, in a format that can be shared with the neuroscience research community. As technologies for  functional mapping, registration, and tracing advance over time, this facility will evaluate new methods, adopt  those that will substantially improve the Core’s capabilities, and train project personnel in their use. Taken  together, these functions are essential for placing recorded and perturbed neural activity into a brain-wide  anatomical context, which will enable the integration of information produced by individual experiments and  techniques into a coherent theoretical framework.
项目摘要:核心4,脑配准和通路追踪   工作记忆是一种在头脑中暂时保存多条信息以进行操作的能力, 对几乎所有认知能力都至关重要这一多方面的研究项目旨在全面 在多个大脑区域中剖析这种能力的神经回路机制。要研究的行为是 一种基于感官证据逐渐积累的决策任务,因此依赖于 在工作记忆上。要全面了解这种行为与大脑功能的关系, 多层次的解释:从特定区域的神经活动到这些区域如何相互作用 通过特定的途径形成全脑网络。这些层次的分析需要不同的技术方法, 它们通常很难严格地相互关联。这一核心将促进严谨性和可重复性, 通过制作一个解剖框架来标准化和比较各种类型的拟议研究 将被收集的数据。该设施将在建立一个广泛的综合性 项目的结构。首先,它将制作标准化的功能地图, 在细胞分辨率成像或失活研究之前确定视觉皮层区域的边界。 第二,它将所有研究的大脑区域登记到解剖学背景中,包括连接性, 功能意义。自动细胞识别方法将用于调查直接成像区域 以及间接连接的区域,并对神经元和其他感兴趣的对象进行分类。第三,支持 通过突触进行长距离追踪,以确定所涉及的遥远大脑区域之间的连接路径 收集证据第四,它将把这些信息组织到一个关系数据库中, 实验,以一种可以与神经科学研究社区共享的格式。作为技术, 随着时间的推移,功能映射,注册和跟踪进展,该设施将评估新方法,采用 那些将大大提高核心能力的项目,并培训项目人员使用这些项目。采取 总而言之,这些功能对于将记录和扰动的神经活动放入全脑至关重要 解剖学背景,这将使个人实验产生的信息的整合, 将这些技术整合到一个连贯的理论框架中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Sheng-Hung Wang其他文献

Samuel Sheng-Hung Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Sheng-Hung Wang', 18)}}的其他基金

C4: Neuroanatomy
C4:神经解剖学
  • 批准号:
    10705971
  • 财政年份:
    2023
  • 资助金额:
    $ 16.97万
  • 项目类别:
Brain Registration and Histology
脑登记和组织学
  • 批准号:
    10247577
  • 财政年份:
    2017
  • 资助金额:
    $ 16.97万
  • 项目类别:
Transcending dynamic and kinetic limits for neuronal calcium sensing
超越神经元钙传感的动态和动力学限制
  • 批准号:
    8912632
  • 财政年份:
    2015
  • 资助金额:
    $ 16.97万
  • 项目类别:
Transcending dynamic and kinetic limits for neuronal calcium sensing
超越神经元钙传感的动态和动力学限制
  • 批准号:
    8999033
  • 财政年份:
    2015
  • 资助金额:
    $ 16.97万
  • 项目类别:
Rapid-Scanning Prairie Multiphoton Microscope System for Molecular Biology Models
用于分子生物学模型的快速扫描草原多光子显微镜系统
  • 批准号:
    7793047
  • 财政年份:
    2010
  • 资助金额:
    $ 16.97万
  • 项目类别:
Dendritic Integration and Cerebellar Synaptic Plasticity
树突整合和小脑突触可塑性
  • 批准号:
    6832829
  • 财政年份:
    2002
  • 资助金额:
    $ 16.97万
  • 项目类别:
Dendritic Integration and Cerebellar Synaptic Plasticity
树突整合和小脑突触可塑性
  • 批准号:
    8204508
  • 财政年份:
    2002
  • 资助金额:
    $ 16.97万
  • 项目类别:
Dendritic Integration and Cerebellar Synaptic Plasticity
树突整合和小脑突触可塑性
  • 批准号:
    6685196
  • 财政年份:
    2002
  • 资助金额:
    $ 16.97万
  • 项目类别:
Dendritic Integration and Cerebellar Synaptic Plasticity
树突整合和小脑突触可塑性
  • 批准号:
    7991767
  • 财政年份:
    2002
  • 资助金额:
    $ 16.97万
  • 项目类别:
Imaging adaptive cerebellar processing at cellular resolution in awake mice
以细胞分辨率对清醒小鼠的适应性小脑处理进行成像
  • 批准号:
    8820398
  • 财政年份:
    2002
  • 资助金额:
    $ 16.97万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 16.97万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 16.97万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 16.97万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 16.97万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 16.97万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 16.97万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 16.97万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 16.97万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 16.97万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 16.97万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了