Brain Registration and Histology
脑登记和组织学
基本信息
- 批准号:10247577
- 负责人:
- 金额:$ 16.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-28 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAlgorithmsAnatomyAnimalsAreaAtlasesBehaviorBiophysicsBrainBrain MappingBrain imagingBrain regionCell CountCellsCommunitiesCore FacilityDataData SetDecision MakingDistantFunctional ImagingGoalsHistologyHuman ResourcesImageIndividualLabelLightLinkLocationMapsMethodsMicroscopyMindModelingNeuronsNeurosciences ResearchOutputPathway interactionsProceduresPropertyPseudorabiesRabiesReproducibilityResearchResearch Project GrantsResearch TechnicsResolutionScanningSensoryServicesShort-Term MemorySimplexvirusSiteStandardizationStructureSurveysSynapsesTechniquesTechnologyTimeViralVirusVisual Cortexbasecell typecognitive abilityexperimental studyextrastriate visual corteximprovedin vivoinformation processinginterestneural circuitneuromechanismnon-linear transformationprogramsrelating to nervous systemrelational databaseretinotopictomographytraining projecttwo-photonvirtual
项目摘要
Project Summary: Core 4, Brain Registration and Pathway Tracing
Working memory, the ability to temporarily hold multiple pieces of information in mind for manipulation, is
central to virtually all cognitive abilities. This multi-component research project aims to comprehensively
dissect the neural circuit mechanisms of this ability across multiple brain areas. The behavior to be studied is
a type of decision-making task that is based on the gradual accumulation of sensory evidence and thus relies
on working memory. A full understanding of how this behavior relates to this brain function requires
explanation at multiple levels: from neural activity in particular regions to how those regions interact in
brain-wide networks via specific pathways. These levels of analysis require distinct technical approaches,
which are often difficult to relate to one another rigorously. This Core will promote rigor and reproducibility in
the proposed research by producing an anatomical framework to standardize and compare the various types
of data that will be collected. The facility will serve several essential functions in building a broad integrative
structure for the project. First, it will produce standardized functional maps that will be used to accurately
determine the boundaries of visual cortical regions before cellular-resolution imaging or inactivation studies.
Second, it will register all studied brain areas into an anatomical context that includes connectivity and
functional significance. Automated cell-recognition methods will be used to survey directly imaged regions
and indirectly connected regions, and to classify neurons and other objects of interest. Third, it will support
long-distance tracing across synapses to identify paths of connectivity between distant brain regions involved
in evidence accumulation. Fourth, it will organize this information in a relational database that links all the
experiments, in a format that can be shared with the neuroscience research community. As technologies for
functional mapping, registration, and tracing advance over time, this facility will evaluate new methods, adopt
those that will substantially improve the Core’s capabilities, and train project personnel in their use. Taken
together, these functions are essential for placing recorded and perturbed neural activity into a brain-wide
anatomical context, which will enable the integration of information produced by individual experiments and
techniques into a coherent theoretical framework.
项目总结:核心4,脑注册和路径追踪
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Sheng-Hung Wang其他文献
Samuel Sheng-Hung Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Sheng-Hung Wang', 18)}}的其他基金
Transcending dynamic and kinetic limits for neuronal calcium sensing
超越神经元钙传感的动态和动力学限制
- 批准号:
8912632 - 财政年份:2015
- 资助金额:
$ 16.97万 - 项目类别:
Transcending dynamic and kinetic limits for neuronal calcium sensing
超越神经元钙传感的动态和动力学限制
- 批准号:
8999033 - 财政年份:2015
- 资助金额:
$ 16.97万 - 项目类别:
Rapid-Scanning Prairie Multiphoton Microscope System for Molecular Biology Models
用于分子生物学模型的快速扫描草原多光子显微镜系统
- 批准号:
7793047 - 财政年份:2010
- 资助金额:
$ 16.97万 - 项目类别:
Dendritic Integration and Cerebellar Synaptic Plasticity
树突整合和小脑突触可塑性
- 批准号:
6832829 - 财政年份:2002
- 资助金额:
$ 16.97万 - 项目类别:
Dendritic Integration and Cerebellar Synaptic Plasticity
树突整合和小脑突触可塑性
- 批准号:
8204508 - 财政年份:2002
- 资助金额:
$ 16.97万 - 项目类别:
Dendritic Integration and Cerebellar Synaptic Plasticity
树突整合和小脑突触可塑性
- 批准号:
6685196 - 财政年份:2002
- 资助金额:
$ 16.97万 - 项目类别:
Dendritic Integration and Cerebellar Synaptic Plasticity
树突整合和小脑突触可塑性
- 批准号:
7991767 - 财政年份:2002
- 资助金额:
$ 16.97万 - 项目类别:
Imaging adaptive cerebellar processing at cellular resolution in awake mice
以细胞分辨率对清醒小鼠的适应性小脑处理进行成像
- 批准号:
8820398 - 财政年份:2002
- 资助金额:
$ 16.97万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 16.97万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 16.97万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 16.97万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 16.97万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 16.97万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 16.97万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 16.97万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 16.97万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 16.97万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 16.97万 - 项目类别:
Continuing Grant














{{item.name}}会员




