Tracking brain arousal fluctuations for fMRI Big Data discovery
跟踪大脑唤醒波动以发现功能磁共振成像大数据
基本信息
- 批准号:9982966
- 负责人:
- 金额:$ 20.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdvanced DevelopmentAgingAlzheimer&aposs DiseaseAlzheimer’s disease biomarkerArousalBehaviorBehavioralBig DataBiological AvailabilityBiological MarkersBrainBrain DiseasesClinicalClinical ResearchCognitiveCommunitiesComplexDataData AnalysesData DiscoveryData ScienceData SetDatabasesDetectionDiagnosisDimensionsDiseaseDisease ProgressionElectroencephalographyEnvironmentExtramural ActivitiesFunctional Magnetic Resonance ImagingGoalsGrowthHealthHumanIntramural Research ProgramKnowledgeLongevityMachine LearningMeasuresMental disordersMentorsMethodsModelingNeurodegenerative DisordersNeurosciencesNeurosciences ResearchOutcomeParticipantPhasePhysiologic MonitoringPhysiologicalProcessPropertyResearchResearch PersonnelResourcesSignal TransductionSoftware ToolsSourceSpace ModelsTechniquesTrainingUnited States National Institutes of HealthUniversitiesVisitWakefulnessWorkage relatedagedalertnessbasebehavior measurementbig-data sciencebrain dysfunctioncareerclinical databasecohortdata acquisitiondimensional analysisexperienceflexibilityhealthy aginghigh dimensionalityhuman dataimaging studyimprovedindexinginnovationlearning strategymild cognitive impairmentmultimodalitynervous system disorderneuroimagingneuroimaging markerneurophysiologyneuropsychiatric disordernovelrapid growthrecurrent neural networkrelating to nervous systemspecific biomarkersstatistical learningstatisticssymposiumtoolusabilityvisual tracking
项目摘要
Recent years have seen rapid growth in the availability of large, complex functional magnetic resonance
imaging (fMRI) datasets of the human brain. However, the potential of this fMRI Big Data is presently limited by
our understanding of the neural sources that contribute to fMRI signals. Fluctuations in arousal (i.e., in the level
wakefulness and alertness) are known to modulate cognitive and behavioral processes and to display
prominent alterations in neuropsychiatric disorders. Yet, since the vast majority of fMRI datasets lack
neurophysiological or behavioral indices of arousal, fMRI Big Data cannot be readily harnessed to understand
human brain arousal in health and disease. Recent data-driven approaches attempt to fill this gap but have
limitations. The overall goal of this proposal is to increase the transformative potential of fMRI Big Data for
human neuroscience through a novel analytic framework for detecting arousal fluctuations from fMRI data
alone. We will accomplish this goal by developing and disseminating tools for modeling arousal fluctuations
based on powerful statistical learning methods (Specific Aim 1). We will apply these models to large fMRI
databases of healthy aging and Alzheimer’s Disease, both of which are associated with altered arousal
(Specific Aims 2 and 3). We will capitalize on these databases to determine how knowledge of brain arousal
fluctuations improves neuroimaging biomarkers of aging- and neurodegenerative disease-related changes in
human brain function, and the extent to which arousal itself constitutes an informative biomarker of these
states. This research would, moreover, increase the reliability and translational potential of fMRI studies more
broadly by providing the ability to account for these major neural (arousal) state changes.
These immediate research goals form a strong bridge with my long-term research objective of
understanding principles of brain function by developing and innovatively adapting methods for the analysis of
large and complex neuroimaging datasets. This objective is enabled by the mentored training plan, where I will
(i) develop expertise in cutting-edge machine learning techniques and (ii) apply these techniques to multimodal
neuroimaging data. The two co-mentors have complementary expertise that align, respectively, with these two
training components. Aims 1 and 2 will span the mentored phase and part of the independent phase, while Aim
3 (application to the Alzheimer’s Disease Neuroimaging Initiative data) will be performed in the independent
phase. The mentored environment of the NIH Intramural Research Program provides the resources for all
planned data acquisition, as well as a rich community of neuroscience investigators and seminars. Interaction
with the extramural (Columbia University) co-mentor will occur through frequent video conferences and several
visits, with opportunities to engage with the Columbia data science community.
近年来,大型、复杂的功能性磁共振成像的可用性迅速增长。
人类大脑的功能磁共振成像(fMRI)数据集。然而,这种fMRI大数据的潜力目前受到限制,
我们对功能磁共振成像信号的神经源的理解。觉醒的波动(即,水平
清醒和警觉)被认为调节认知和行为过程,并显示
神经精神疾病的显著改变。然而,由于绝大多数功能磁共振成像数据集缺乏
神经生理学或行为指标的唤醒,功能磁共振成像大数据不能很容易地利用来了解
人类大脑在健康和疾病中的觉醒。最近的数据驱动方法试图填补这一空白,但
局限性。该提案的总体目标是增加fMRI大数据的变革潜力,
人类神经科学通过一种新的分析框架,从fMRI数据中检测唤醒波动
一个人我们将通过开发和传播模拟唤醒波动的工具来实现这一目标
基于强大的统计学习方法(具体目标1)。我们将把这些模型应用于大型功能磁共振成像
健康老龄化和老年痴呆症的数据库,这两种疾病都与唤醒改变有关。
(具体目标2和3)。我们将利用这些数据库来确定大脑唤醒的知识
波动改善了衰老和神经退行性疾病相关变化的神经影像学生物标志物,
人类大脑功能,以及唤醒本身构成这些信息生物标志物的程度
states.此外,这项研究将进一步提高功能磁共振成像研究的可靠性和转化潜力。
通过提供解释这些主要神经(唤醒)状态变化的能力来广泛地实现。
这些近期的研究目标与我的长期研究目标形成了一个牢固的桥梁,
通过开发和创新性地调整分析方法来理解大脑功能的原理,
大型和复杂的神经成像数据集。这一目标是通过指导培训计划实现的,在该计划中,我将
(i)开发尖端机器学习技术的专业知识,并(ii)将这些技术应用于多模式
神经成像数据。这两位共同导师具有互补的专业知识,分别与这两个
培训内容。目标1和2将跨越辅导阶段和独立阶段的一部分,
3(应用于阿尔茨海默病神经影像学倡议数据)将在独立的
相位NIH校内研究计划的指导环境为所有人提供了资源。
有计划的数据采集,以及丰富的神经科学研究人员和研讨会社区。相互作用
与校外(哥伦比亚大学)共同导师将通过频繁的视频会议和几个
访问,并有机会与哥伦比亚数据科学界接触。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
All-night functional magnetic resonance imaging sleep studies.
- DOI:10.1016/j.jneumeth.2018.09.019
- 发表时间:2019-03-15
- 期刊:
- 影响因子:3
- 作者:Moehlman TM;de Zwart JA;Chappel-Farley MG;Liu X;McClain IB;Chang C;Mandelkow H;Özbay PS;Johnson NL;Bieber RE;Fernandez KA;King KA;Zalewski CK;Brewer CC;van Gelderen P;Duyn JH;Picchioni D
- 通讯作者:Picchioni D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine Elizabeth Chang其他文献
Catherine Elizabeth Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine Elizabeth Chang', 18)}}的其他基金
fMRI physiological signatures of aging and Alzheimer's Disease
衰老和阿尔茨海默病的功能磁共振成像生理特征
- 批准号:
10361105 - 财政年份:2021
- 资助金额:
$ 20.25万 - 项目类别:
Relating Vigilance to Connectivity and Neurocognition in Temporal Lobe Epilepsy
将警惕性与颞叶癫痫的连通性和神经认知联系起来
- 批准号:
10618398 - 财政年份:2019
- 资助金额:
$ 20.25万 - 项目类别:
Relating Vigilance to Connectivity and Neurocognition in Temporal Lobe Epilepsy
将警惕性与颞叶癫痫的连通性和神经认知联系起来
- 批准号:
10414142 - 财政年份:2019
- 资助金额:
$ 20.25万 - 项目类别:
Temporal Characteristics of Intrinsic Brain Networks using fMRI
使用功能磁共振成像的内在大脑网络的时间特征
- 批准号:
7485324 - 财政年份:2008
- 资助金额:
$ 20.25万 - 项目类别:
Temporal Characteristics of Intrinsic Brain Networks using fMRI
使用功能磁共振成像的内在大脑网络的时间特征
- 批准号:
7670362 - 财政年份:2008
- 资助金额:
$ 20.25万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 20.25万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 20.25万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 20.25万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 20.25万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 20.25万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 20.25万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 20.25万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 20.25万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 20.25万 - 项目类别:














{{item.name}}会员




