fMRI physiological signatures of aging and Alzheimer's Disease
衰老和阿尔茨海默病的功能磁共振成像生理特征
基本信息
- 批准号:10361105
- 负责人:
- 金额:$ 105.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-09-14
- 项目状态:已结题
- 来源:
- 关键词:AdultAgeAgingAlzheimer disease detectionAlzheimer&aposs DiseaseBig DataBlood VesselsBrainBrain MappingBrain StemCardiacCell NucleusCerebrovascular CirculationCerebrovascular systemCodeCognitiveCommunitiesComplexCouplingDataData SetDatabasesDiseaseEarly DiagnosisEmotionalEmotionsExhibitsFrequenciesFunctional ImagingFunctional Magnetic Resonance ImagingHealthHeart RateHumanIndividualIndividual DifferencesInvestigationLinkLongevityMachine LearningMeasurementMediatingMethodologyMethodsModelingNeurocognitiveNeuronsNeurosciencesParticipantPatternPeripheralPhenotypePhysiologicalPhysiologyProcessPulse OximetryResearch PersonnelRespirationRestRoleSTEM researchSeriesSignal TransductionSourceStructureSystemTechniquesTimeValidationVariantWorkage differenceage relatedbasecerebrovasculardeep learningdenoisingfunctional gaingray matterheart rate variabilityindexinginsightmind body interactionnovelpathological agingrelating to nervous systemrespiratoryresponsestem
项目摘要
PROJECT SUMMARY/ABSTRACT
The growing availability of large functional magnetic resonance imaging (fMRI) datasets has enabled new
investigations into functional systems of the human brain. A challenge – but also opportunity – of fMRI arises
from the fact that BOLD signal stems from multiple intertwined neural and physiological sources. One major
contributor to fMRI signals arises from slow (<0.15 Hz) fluctuations in respiration volume (RV) and heart rate
(HR); these systemic physiological fluctuations can account for a substantial proportion of fMRI signals across
gray matter, and exhibit spatial patterns that overlap with functional networks. While often treated as a
confound, the components of fMRI data linked with systemic physiology may itself present useful information
about brain function and physiology, enabling novel investigation of brain vasculature, autonomic function, and
brain-body interactions. However, many existing fMRI datasets lack concurrent physiological recordings, and
current data-driven techniques do not unambiguously resolve low-frequency physiological signal sources
without peripheral cardiac and respiratory recordings for reference. This proposal conducts novel analyses to
establish associations between fMRI physiological responses, brain networks, and neurocognitive function.
Further, new techniques are proposed for extracting RV and HR time series directly from fMRI data, thereby
enriching existing fMRI datasets with missing physiological information. Through analysis of large, public
datasets, we will: 1) optimize and validate a deep learning technique for reconstructing physiological time
series from resting-state fMRI data alone, which generalizes to participants across the adult lifespan; and 2)
relate brain-wide fMRI physiological features to age and phenotypic variation; and 3) probe the value of fMRI
physiological responses as early markers of Alzheimer's Disease. We will make all of the resulting signals,
models, and code readily available to the community, so that researchers can apply and extend our methods to
enhance the value of many existing datasets. Through approaches for resolving neural and physiological
sources underlying fMRI signal dynamics, this project also has implications for increasing the precision of fMRI
for mapping brain circuits at the level of the individual.
项目摘要/摘要
大型功能磁共振成像(fMRI)数据集的可用性不断增长。
研究人脑功能系统。 fMRI的挑战(但也是机会)出现
从来自多个相互交织的神经和生理来源的大胆信号植物。一个主要
fMRI信号的贡献是由呼吸体积(RV)和心率缓慢(<0.15 Hz)的慢(<0.15 Hz)引起的
(HR);这些系统性的生理波动可以占跨MMRI信号的很大比例
灰质和与功能网络重叠的裸露空间模式。虽然经常被视为
混淆,与全身生理相关的fMRI数据的组成部分本身可能会提供有用的信息
关于大脑功能和生理学,可以对脑脉管系统,自主功能和
脑体相互作用。但是,许多现有的fMRI数据集缺乏并发的生理记录,并且
当前数据驱动的技术不会明确解决低频生理信号源
没有外周心脏和呼吸记录供参考。该提案进行了新的分析
建立fMRI身体反应,大脑网络和神经认知功能之间的关联。
此外,提出了直接从fMRI数据中提取RV和HR时间序列的新技术,从而
通过缺少物理信息来丰富现有的fMRI数据集。通过分析大型公众
数据集,我们将:1)优化和验证一种重建生理时间的深度学习技术
仅从静止状态fMRI数据中进行的序列,该数据概括为整个成人寿命的参与者;和2)
将大脑范围的fMRI物理特征与年龄和表型变异相关联; 3)探测fMRI的值
生理反应是阿尔茨海默氏病的早期标记。我们将制作所有由此产生的信号,
模型和易于提供的代码,以便研究人员可以应用并将我们的方法扩展到
增强许多现有数据集的价值。通过解决神经和生理的方法
fMRI信号动力学的来源,该项目也对提高fMRI的精度有影响
用于在个体水平上绘制脑电路。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Catherine Elizabeth Chang其他文献
Catherine Elizabeth Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Catherine Elizabeth Chang', 18)}}的其他基金
Relating Vigilance to Connectivity and Neurocognition in Temporal Lobe Epilepsy
将警惕性与颞叶癫痫的连通性和神经认知联系起来
- 批准号:
10618398 - 财政年份:2019
- 资助金额:
$ 105.56万 - 项目类别:
Relating Vigilance to Connectivity and Neurocognition in Temporal Lobe Epilepsy
将警惕性与颞叶癫痫的连通性和神经认知联系起来
- 批准号:
10414142 - 财政年份:2019
- 资助金额:
$ 105.56万 - 项目类别:
Tracking brain arousal fluctuations for fMRI Big Data discovery
跟踪大脑唤醒波动以发现功能磁共振成像大数据
- 批准号:
9982966 - 财政年份:2017
- 资助金额:
$ 105.56万 - 项目类别:
Temporal Characteristics of Intrinsic Brain Networks using fMRI
使用功能磁共振成像的内在大脑网络的时间特征
- 批准号:
7485324 - 财政年份:2008
- 资助金额:
$ 105.56万 - 项目类别:
Temporal Characteristics of Intrinsic Brain Networks using fMRI
使用功能磁共振成像的内在大脑网络的时间特征
- 批准号:
7670362 - 财政年份:2008
- 资助金额:
$ 105.56万 - 项目类别:
相似国自然基金
TBX20在致盲性老化相关疾病年龄相关性黄斑变性中的作用和机制研究
- 批准号:82220108016
- 批准年份:2022
- 资助金额:252 万元
- 项目类别:国际(地区)合作与交流项目
LncRNA ALB调控LC3B活化及自噬在体外再生晶状体老化及年龄相关性白内障发病中的作用及机制研究
- 批准号:81800806
- 批准年份:2018
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
APE1调控晶状体上皮细胞老化在年龄相关性白内障发病中的作用及机制研究
- 批准号:81700824
- 批准年份:2017
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
KDM4A调控平滑肌细胞自噬在年龄相关性血管老化中的作用及机制
- 批准号:81670269
- 批准年份:2016
- 资助金额:55.0 万元
- 项目类别:面上项目
老年人一体化编码的认知神经机制探索与干预研究:一种减少与老化相关的联结记忆缺陷的新途径
- 批准号:31470998
- 批准年份:2014
- 资助金额:87.0 万元
- 项目类别:面上项目
相似海外基金
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 105.56万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 105.56万 - 项目类别:
Understanding the Mechanisms and Consequences of Basement Membrane Aging in Vivo
了解体内基底膜老化的机制和后果
- 批准号:
10465010 - 财政年份:2023
- 资助金额:
$ 105.56万 - 项目类别:
Age and hearing loss effects on subcortical neural encoding
年龄和听力损失对皮层下神经编码的影响
- 批准号:
10652139 - 财政年份:2023
- 资助金额:
$ 105.56万 - 项目类别: