Generating Accurate Estimates of Required Sample Size for Multilevel Implementation Studies in Mental Health
生成心理健康多层次实施研究所需样本量的准确估计
基本信息
- 批准号:10188231
- 负责人:
- 金额:$ 30.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-11 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptionAmericanCaringCharacteristicsClinicalCommunitiesData AnalysesData SetFoundationsFundingFutureHealthIndividualInterventionLiteratureManuscriptsMeasurementMental HealthMental disordersMethodologyMethodsMissionNational Institute of Mental HealthOutcomePartner in relationshipPatient CarePatient-Focused OutcomesPatientsPersonal SatisfactionPilot ProjectsPopulationPredictive FactorProcessProviderPublishingReference ValuesReporterResearchResearch DesignResearch PersonnelResourcesRiskSample SizeSamplingScienceScientistSpeedSystemTestingTranslationsUnited States National Institutes of HealthWorkbehavioral healthcommunity settingcostdesignevidence baseexperiencehealth care qualityhealth care settingsimplementation designimplementation determinantsimplementation researchimplementation scienceimplementation strategyimplementation studyimprovedinterestpatient populationpower analysispredictive modelingpreventstudy characteristicsstudy populationtool
项目摘要
Project Summary
This project fills a major methods gap that prevents investigators from designing studies with accurate esti-
mates of required sample size for multilevel behavioral health implementation studies. Implementation science
is essential to achieving NIMH’s mission. An essential step in designing implementation studies is to conduct a
statistical power analysis to determine the minimum sample size required to statistically detect effects of interest.
Power analyses for implementation research are more complicated because they need to account for (a) patients
nested within providers who are nested within organizations or other systems, and (b) scientific aims that typically
focus on testing (or at a minimum accounting for) cross-level effects of higher-level (e.g., organization, clinician)
implementation determinants or strategies on lower-level (e.g., patient) outcomes. While multilevel power anal-
ysis tools are available to accommodate these types of nested studies, the tools require investigators to have
prior estimates of three key design parameters to determine the proper sample size for their study —intraclass
correlation coefficient (ICC), effect size, and proportion of variance explained by covariates—which are not rou-
tinely available from the published literature and cannot be reliably estimated from small pilot studies. Power
analyses that use inaccurate estimates of these design parameters are highly likely to be either underpowered,
and consequently at-risk of not detecting important effects, or over-powered, and consequently wasteful of lim-
ited resources. Lack of reference values for these parameters is a foundational barrier to the field because even
small changes in design parameters can dramatically alter the effective sample size from N=300 to N=50.
NIMH has funded a large number of implementation studies during the last 10 years (N=140) which provides
an opportunity for us to re-access the datasets from these projects to generate accurate estimates of multilevel
design parameters for behavioral health implementation studies. We will use NIH-RePorter to identify all NIMH-
funded behavioral health implementation studies conducted during the last 10 years and collaborate with PIs to
extract design parameters for targeted implementation and clinical outcomes, which we will summarize and pub-
lish for the field. We will also generate a predictive model that enables PIs to estimate design parameters tailored
to the characteristics of their new studies. Building on our preliminary work within the Penn NIMH ALACRITY
Center, this project will (1) generate pooled estimates and ranges of design parameters (i.e., ICCs, effect sizes,
covariate R2) needed to accurately estimate sample size in multilevel behavioral health implementation studies,
and (2) identify the study characteristics that predict the magnitude of these design parameters. Completion of
this work will remove a ubiquitous methodological barrier that undermines the advancement of implementation
science in behavioral health. The study will contribute to higher quality, more replicable science, more efficient
use of NIMH resources, and higher impact implementation research to improve healthcare quality and well-being
for millions of individuals who experience psychiatric disorders each year.
项目摘要
这个项目填补了一个主要的方法空白,使研究人员无法设计具有准确估计的研究。
多水平行为健康实施研究所需样本量的配对。实施科学
对于完成NIMH的使命是至关重要的。设计实施研究的一个基本步骤是进行
统计功率分析,以确定统计检测感兴趣的影响所需的最小样本量。
实施研究的功率分析更为复杂,因为它们需要考虑(A)患者
嵌套在嵌套在组织或其他系统内的提供者内,以及(B)通常
专注于测试(或至少说明)更高级别(例如,组织、临床医生)的跨级别影响
较低级别(例如,患者)结果的实施决定因素或战略。而多电平功率肛门-
可以使用解决工具来适应这些类型的嵌套研究,这些工具要求调查人员具有
预先估计三个关键设计参数,以确定其研究的适当样本量-组内
相关系数(ICC)、效应大小和由协变量解释的方差比例。
从已出版的文献中可以得到很小的数据,而不能从小规模的试点研究中可靠地估计。电源
使用对这些设计参数的不准确估计的分析很可能要么动力不足,
因此有可能检测不到重要的影响,或功率过大,从而浪费LIM-
有限的资源。缺乏这些参数的参考值是该领域的一个基本障碍,因为即使
设计参数的微小变化可以极大地改变有效样本量,从N=300到N=50。
NIMH在过去10年(N=140)资助了大量的实施研究,提供了
我们有机会重新访问这些项目的数据集,以生成多水平的准确估计
为行为健康实施研究设计参数。我们将使用NIH-Report来识别所有NIMH-
资助过去10年进行的行为健康实施研究,并与PI合作
为有针对性的实施和临床结果提取设计参数,我们将总结并公布-
在球场上学英语。我们还将生成一个预测模型,使PI能够估计定制的设计参数
以适应他们新研究的特点。以我们在宾夕法尼亚州立大学的前期工作为基础
中心,该项目将(1)生成综合估计和设计参数范围(即ICC、效果大小、
协变量R2)在多水平行为健康实施研究中准确估计样本大小所需的,
以及(2)确定预测这些设计参数大小的研究特征。完成
这项工作将消除无处不在的方法障碍,这一障碍破坏了执行工作的进展
行为健康方面的科学。这项研究将有助于更高质量、更可复制的科学、更高效
使用NIMH资源,以及更有影响力的实施研究,以改善医疗质量和福祉
对于每年经历精神障碍的数百万人来说。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nathaniel J. Williams其他文献
PV-array sizing in hybrid diesel/PV/battery microgrids under uncertainty
不确定情况下混合柴油/光伏/电池微电网中的光伏阵列尺寸
- DOI:
10.1109/powerafrica.2016.7556598 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Nathaniel J. Williams;P. Jaramillo;Jay Taneja - 通讯作者:
Jay Taneja
In Search of the Common Elements of Clinical Supervision: A Systematic Review
寻找临床监督的共同要素:系统回顾
- DOI:
10.1007/s10488-022-01188-0 - 发表时间:
2022 - 期刊:
- 影响因子:2.6
- 作者:
Mimi Choy;Daniel Baslock;Charissa Cable;S. Marsalis;Nathaniel J. Williams - 通讯作者:
Nathaniel J. Williams
Post-connection electricity demand and pricing in newly electrified households: Insights from a large-scale dataset in Rwanda
新电气化家庭的连接后电力需求和定价:来自卢旺达大规模数据集的见解
- DOI:
10.1016/j.enpol.2024.114449 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:9.200
- 作者:
Joel Mugyenyi;Bob Muhwezi;Simone Fobi;Civian Massa;Jay Taneja;Nathaniel J. Williams;Vijay Modi - 通讯作者:
Vijay Modi
Predicting initial electricity demand in off-grid Tanzanian communities using customer survey data and machine learning models
使用客户调查数据和机器学习模型预测离网坦桑尼亚社区的初始电力需求
- DOI:
10.1016/j.esd.2021.03.008 - 发表时间:
2021 - 期刊:
- 影响因子:5.5
- 作者:
A. Allee;Nathaniel J. Williams;Alexander L. Davis;P. Jaramillo - 通讯作者:
P. Jaramillo
The Impact of Family Stressors on the Social Development of Adolescents Admitted to a Residential Treatment Facility
家庭压力因素对入住住院治疗机构的青少年社会发展的影响
- DOI:
10.58464/2168-670x.1013 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
C. Harr;Tancy C. Horn;Nathaniel J. Williams;L. DeJager - 通讯作者:
L. DeJager
Nathaniel J. Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nathaniel J. Williams', 18)}}的其他基金
Generating Accurate Estimates of Required Sample Size for Multilevel Implementation Studies in Mental Health
生成心理健康多层次实施研究所需样本量的准确估计
- 批准号:
10370396 - 财政年份:2021
- 资助金额:
$ 30.3万 - 项目类别:
Randomized trial of a leadership and organizational change strategy to improve the implementation and sustainment of digital measurement-based care in youth mental health services
对领导和组织变革策略进行随机试验,以改善青少年心理健康服务中基于数字测量的护理的实施和维持
- 批准号:
10265809 - 财政年份:2019
- 资助金额:
$ 30.3万 - 项目类别:
Randomized trial of a leadership and organizational change strategy to improve the implementation and sustainment of digital measurement-based care in youth mental health services
对领导和组织变革策略进行随机试验,以改善青少年心理健康服务中基于数字测量的护理的实施和维持
- 批准号:
10166946 - 财政年份:2019
- 资助金额:
$ 30.3万 - 项目类别:
Randomized trial of a leadership and organizational change strategy to improve the implementation and sustainment of digital measurement-based care in youth mental health services
对领导和组织变革策略进行随机试验,以改善青少年心理健康服务中基于数字测量的护理的实施和维持
- 批准号:
10405594 - 财政年份:2019
- 资助金额:
$ 30.3万 - 项目类别:
Understanding the impact of organizational implementation strategies on EBT use
了解组织实施策略对 EBT 使用的影响
- 批准号:
8455017 - 财政年份:2012
- 资助金额:
$ 30.3万 - 项目类别:
Understanding the impact of organizational implementation strategies on EBT use
了解组织实施策略对 EBT 使用的影响
- 批准号:
8722035 - 财政年份:2012
- 资助金额:
$ 30.3万 - 项目类别:
Understanding the impact of organizational implementation strategies on EBT use
了解组织实施策略对 EBT 使用的影响
- 批准号:
8551405 - 财政年份:2012
- 资助金额:
$ 30.3万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30.3万 - 项目类别:
Research Grant