Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
基本信息
- 批准号:10188497
- 负责人:
- 金额:$ 51.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Acoustic NerveAcousticsAdolescentAdultAffectAgeAgingAmericanAnimalsAuditoryAuditory systemAxonBilateralBrainCell NucleusCellsCochleaCochlear nucleusCodeCognitionCommunicationComplexComputer ModelsDendritesDetectionDevelopmentDorsalEnvironmentEnvironmental Risk FactorEtiologyExposure toFiberFrequenciesFunctional disorderGeneticGoalsHair CellsHearing problemHumanHyperacusisIndividualInfectionInterneuronsIon ChannelIonsKnowledgeLiteratureLoudnessMapsMasksMeasuresModelingMolecularMusNerve FibersNeuraxisNeuronsNoiseNoise-Induced Hearing LossOccupationalOutputPathway interactionsPatternPerceptionPeripheralPersonsPharmacotherapyPopulationPovertyProcessPyramidal CellsRattusResidual stateSensorySensory ThresholdsSignal TransductionSliceSocial isolationSpeechSpeech DiscriminationSynapsesSynaptic TransmissionTestingTrainingUnited StatesWorkauditory processingcancer therapycell typedorsal cochlear nucleusganglion cellhearing impairmenthippocampal pyramidal neuronin vivoinformation processinginsightjuvenile animalmature animalnerve supplyneural circuitnovelprogramsreceptorresponsesensory discriminationsensory inputsensory integrationsoundspiral ganglionstellate cellstimulus processingsynaptic functionvirtual
项目摘要
Hearing loss is a pervasive problem that can result from exposure to loud sounds, to drugs for treatment
of cancer and infections, from aging, or from individual genetic factors. Noise-induce hearing loss (NIHL),
from both occupational and recreational causes, is a growing issue that is currently is thought to affect
more than 40 million Americans. Nearly 25% of adults have audiological signs consistent with causation
by NIHL. Hearing loss leads to difficulties in communication, social isolation, and possibly to changes in
cognition. Most causes of hearing loss are caused by dysfunctional changes in the cochlea and spiral
ganglion cells, which in turn provided a degraded sensory representation to the cochlear nucleus (CN)
where the axons of spiral ganglion cells, the auditory nerve fibers (ANFs), terminate. The consequences
of cochlear NIHL then propagate throughout the central auditory system, engaging pathophysiological
increases in excitability and altering synaptic function. The CN consists of networks of neurons with distinct
patterns of synaptic innervation from ANFs, and these neurons create parallel, yet intertwined, pathways
for upstream analysis. Although sensory processing in the CN has been well studied in animals with normal
cochleae, how the mechanisms and functions of CN circuits change after hearing loss, and the
consequences of those changes for sensory processing, is not as well understood. Many cellular
mechanisms have only been studied in juvenile mice during a developmental sensitive period. There is an
unmet need to understand the unique cellular mechanisms underlying NIHL that occur in adults. Here, we
propose to use controlled NIHL to perturb the ANF inputs to the CN, and then to examine specific synapses
and cellular excitability mechanisms related to sensory processing in noisy environments in the CN. First,
we will examine the hypothesis that NIHL leads to increased excitability of three specific populations of CN
neurons, two of which have not been studied, and one that has only been studied in very young animals,
in brain slices in adult mice. We will determine which specific mechanisms and ion channels are causal to
changes in excitability. Second, we will examine how the synaptic inputs to different neurons of the CN are
affected by NIHL, testing the hypotheses that NIHL induces mechanisms that amplify residual dendritic
excitatory synaptic inputs, and alter the functional organization and strength of inhibition at specific local
connections. Third, we will examine how the detection of sounds in noise is affected by NIHL in these three
populations of CN neurons, using an established acoustic paradigm, in both computational models and in
vivo. Together the results from these studies will provide insights into how the early stage processing of
sound is affected by hearing loss, and can contribute identifying approaches to optimize sensory
discrimination after hearing loss.
听力损失是一个普遍存在的问题,可能是由于暴露于响亮的声音,药物治疗
癌症和感染,衰老,或个体遗传因素。噪声性听力损失(NIHL),
从职业和娱乐的原因,是一个日益严重的问题,目前被认为是影响
超过4000万美国人近25%的成年人有听力学迹象符合因果关系
的NIHL。听力损失导致沟通困难,社会孤立,并可能改变
认知.大多数听力损失的原因是由于耳蜗和螺旋的功能障碍性变化引起的
神经节细胞,这反过来又提供了一个退化的感觉代表耳蜗核(CN)
螺旋神经节细胞的轴突即听觉神经纤维(ANF)终止于此。后果
耳蜗NIHL然后传播到整个中枢听觉系统,
增加兴奋性和改变突触功能。CN由神经元网络组成,
ANF的突触神经支配模式,这些神经元产生平行但交织的通路,
上游分析。虽然在CN的感觉加工已经在正常的动物中得到了很好的研究,
耳蜗,CN回路的机制和功能如何在听力损失后改变,以及
这些变化对感官加工的影响,还没有得到很好的理解。许多细胞
机制仅在发育敏感期的幼年小鼠中进行了研究。有一个
我们需要了解在成人中发生的NIHL的独特细胞机制。这里我们
我建议使用受控的NIHL来干扰到CN的ANF输入,然后检查特定的突触
以及CN中与噪声环境中的感觉处理相关的细胞兴奋性机制。第一、
我们将检验NIHL导致三个特定CN群体兴奋性增加的假设
神经元,其中两个还没有被研究过,一个只在非常年轻的动物身上研究过,
在成年小鼠的脑切片中。我们将确定哪些特定机制和离子通道是导致
兴奋性的变化。其次,我们将研究如何突触输入到CN的不同神经元,
受NIHL的影响,测试NIHL诱导放大残余树突状细胞的机制的假设,
兴奋性突触输入,并改变功能组织和抑制强度在特定的局部
连接.第三,我们将研究如何检测噪声中的声音是受NIHL在这三个
CN神经元群体,使用已建立的声学范式,在计算模型和
vivo.总之,这些研究的结果将为了解早期阶段如何处理
声音受听力损失的影响,可以帮助识别优化感官的方法,
听力损失后的歧视
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul B Manis其他文献
Paul B Manis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul B Manis', 18)}}的其他基金
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
- 批准号:
10623261 - 财政年份:2020
- 资助金额:
$ 51.35万 - 项目类别:
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
- 批准号:
10399541 - 财政年份:2020
- 资助金额:
$ 51.35万 - 项目类别:
Auditory Cortex: Synaptic organization and plasticity
听觉皮层:突触组织和可塑性
- 批准号:
8415558 - 财政年份:2011
- 资助金额:
$ 51.35万 - 项目类别:
Auditory Cortex: Synaptic organization and plasticity
听觉皮层:突触组织和可塑性
- 批准号:
8231989 - 财政年份:2011
- 资助金额:
$ 51.35万 - 项目类别:
Auditory Cortex: Synaptic organization and plasticity
听觉皮层:突触组织和可塑性
- 批准号:
8108462 - 财政年份:2011
- 资助金额:
$ 51.35万 - 项目类别:
Physiology of Dorsal Cochlear Nucleus Molecular Layer
耳蜗背核分子层的生理学
- 批准号:
7854098 - 财政年份:2009
- 资助金额:
$ 51.35万 - 项目类别:
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
- 批准号:
7850212 - 财政年份:2009
- 资助金额:
$ 51.35万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 51.35万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 51.35万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 51.35万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 51.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 51.35万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 51.35万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 51.35万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 51.35万 - 项目类别:
Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 51.35万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 51.35万 - 项目类别:
Discovery Launch Supplement














{{item.name}}会员




