Auditory Cortex: Synaptic organization and plasticity
听觉皮层:突触组织和可塑性
基本信息
- 批准号:8231989
- 负责人:
- 金额:$ 43.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-03-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAction PotentialsAffectAnisotropyAreaAuditory PerceptionAuditory areaBackBasal Nucleus of MeynertBiological Neural NetworksBrainCalciumCalcium SignalingCellsCholinergic ReceptorsCochlear ImplantsComputer ArchitecturesDataDendritesDiscriminationEnvironmentEquilibriumExhibitsExposure toFoundationsFrequenciesGoalsHearingHearing AidsHigh-Frequency Hearing LossLateralLeadLearningLifeMapsMeasuresMusMuscarinic Acetylcholine ReceptorNeuronsNoiseNoise-Induced Hearing LossOptical MethodsOrganOutcomes ResearchPotassium ChannelPreparationProcessPyramidal CellsReceptor ActivationReportingResearchResidual stateSelf-Help DevicesSensorySensory ProcessShapesSliceSourceStagingSynapsesSynaptic plasticitySystemTestingThalamic structureTimeTinnitusVoltage-Gated Potassium Channelbasal forebrainbasecholinergicclassical conditioningfunctional restorationhearing impairmenthippocampal pyramidal neuronin vivoinsightneuromechanismprogramspublic health relevancerelating to nervous systemresearch studyresponserestorationsensory systemsound
项目摘要
DESCRIPTION (provided by applicant): Sensory systems perform adaptive processing of the sensory environment on a moment-to- moment basis. In the cortex, adaptive processing develops the basic network, optimizes sensory learning for specific perceptual tasks, and supports compensatory responses to long- term changes in sensory input. Cortical plasticity depends on the organization of intracortical circuits as well as the intrinsic plasticity of local microcircuits. In this proposal, we will explore local circuit organization within and orthogonal to the tonotopic axes of the primary auditory cortex, the mechanisms regulating synaptic plasticity in those circuits, and the effects of hearing loss on circuit organization and synaptic plasticity. In the first aim, we will test the hypothesis that the organization of synaptic connections in L2/3 in primary auditory cortex is anisotropic with respect to the tonotopic axes, and we will compare the strength and organization of the supragranular input to L4 neurons with that from layers 5 and 6. We will measure the tonotopic map, then use a thalamocortical brain slice preparation to dissect the responses of morphologically identified neurons in physiologically defined regions to thalamic stimulation and to local intracortical stimulation, using a combination of electrophysiological and optical methods. In the second aim, we will examine cellular mechanisms that regulate a key trigger of synaptic plasticity, action potential back-propagation, in dendrites of L4 and L2/3 neurons. Stimulation of basal forebrain cholinergic systems has been shown to enhance map plasticity in vivo, and we find that activation of cholinergic receptors in auditory cortex affects spike timing-dependent plasticity. We will test the hypotheses that dendritic potassium channels regulate calcium signaling produced by back-propagating action potentials in dendrites, and that these channels are in turn regulated by muscarinic receptor activation. In the third aim we will test the hypothesis that noise-induced hearing loss increases synaptic connectivity between L2/3 pyramidal neurons in the normal-hearing region and the hearing- loss region, and that the hearing loss also decreases synaptic plasticity. Our experiments are aimed at identifying key circuits and cellular mechanisms that support adaptive processing functions at the initial stages of cortical processing, and to understand how those mechanisms respond to hearing loss.
PUBLIC HEALTH RELEVANCE: The neural mechanisms of sensory processing in the brain underlie our normal perceptual abilities, including the identification of sound sources and the ability to communicate through sound. These mechanisms are changed by damage to the sensory organs, and consequently, residual perceptual abilities are often adversely affected. In this project, we seek to understand the functional synaptic organization of the primary auditory cortex, and the mechanisms that underlie one kind of plasticity that occurs in cortex. We will also determine how these network connections and plasticity are affected by a noise-induced high- frequency hearing loss. Our goal is to understand how hearing loss affects the neural substrate for auditory perception, so that we can identify strategies that can help optimize hearing.
描述(由申请人提供):感觉系统在时刻到时刻的基础上对感觉环境进行适应性处理。在皮层中,适应性加工发展了基本网络,优化了特定感知任务的感觉学习,并支持对感觉输入长期变化的补偿性反应。皮层的可塑性不仅取决于局部微回路的内在可塑性,还取决于皮层内回路的组织。在本研究中,我们将探讨初级听觉皮层内和正交的局部回路组织,这些回路中突触可塑性的调节机制,以及听力损失对回路组织和突触可塑性的影响。在第一个目标中,我们将检验初级听觉皮层L2/3的突触连接组织相对于张力轴是各向异性的假设,我们将比较L4神经元与第5层和第6层的核上输入的强度和组织。我们将测量张力图,然后使用丘脑皮质脑切片制备,使用电生理和光学方法的结合,解剖生理定义区域中形态学上确定的神经元对丘脑刺激和局部皮质内刺激的反应。在第二个目标中,我们将研究调节L4和L2/3神经元树突中突触可塑性的关键触发因素——动作电位反向传播的细胞机制。刺激基底前脑胆碱能系统在体内已被证明可以增强图的可塑性,我们发现听觉皮层胆碱能受体的激活会影响峰值时间依赖性的可塑性。我们将测试树突钾通道调节由树突反向传播动作电位产生的钙信号的假设,并且这些通道反过来受到毒蕈碱受体激活的调节。在第三个目标中,我们将验证噪声性听力损失增加了正常听力区和听力损失区L2/3锥体神经元之间的突触连通性,听力损失也降低了突触可塑性的假设。我们的实验旨在确定在皮层处理的初始阶段支持适应性处理功能的关键电路和细胞机制,并了解这些机制如何对听力损失作出反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul B Manis其他文献
Paul B Manis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul B Manis', 18)}}的其他基金
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
- 批准号:
10188497 - 财政年份:2020
- 资助金额:
$ 43.06万 - 项目类别:
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
- 批准号:
10623261 - 财政年份:2020
- 资助金额:
$ 43.06万 - 项目类别:
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
- 批准号:
10399541 - 财政年份:2020
- 资助金额:
$ 43.06万 - 项目类别:
Auditory Cortex: Synaptic organization and plasticity
听觉皮层:突触组织和可塑性
- 批准号:
8415558 - 财政年份:2011
- 资助金额:
$ 43.06万 - 项目类别:
Auditory Cortex: Synaptic organization and plasticity
听觉皮层:突触组织和可塑性
- 批准号:
8108462 - 财政年份:2011
- 资助金额:
$ 43.06万 - 项目类别:
Physiology of Dorsal Cochlear Nucleus Molecular Layer
耳蜗背核分子层的生理学
- 批准号:
7854098 - 财政年份:2009
- 资助金额:
$ 43.06万 - 项目类别:
Cellular Mechanisms of Auditory Information Processing
听觉信息处理的细胞机制
- 批准号:
7850212 - 财政年份:2009
- 资助金额:
$ 43.06万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 43.06万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 43.06万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 43.06万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 43.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 43.06万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 43.06万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 43.06万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 43.06万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 43.06万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 43.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




