Advanced machine learning algorithms that integrate genomewide, longitudinal MRI and demographic data to predict future cognitive decline toward dementia
先进的机器学习算法,集成全基因组、纵向 MRI 和人口统计数据,以预测未来痴呆症的认知能力下降
基本信息
- 批准号:10188360
- 负责人:
- 金额:$ 41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-07-02
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAdverse effectsAgeAlgorithmic SoftwareAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease modelAlzheimer&aposs disease pathologyAmyloidAmyloid beta-ProteinAnatomyBayesian learningBenchmarkingBiological MarkersBloodBrainClinicalClinical DataComplexComputer AnalysisComputer ModelsComputer softwareDataDementiaEducationElderlyEmerging TechnologiesFoundationsFundingFutureGeneticGenomicsGenotypeHarvestHippocampus (Brain)ImageImpaired cognitionImpairmentIndividualLaboratoriesLifeMRI ScansMachine LearningMagnetic Resonance ImagingMaintenanceMethodsMiningModalityModelingOutcomePatternPharmaceutical PreparationsPhasePrevention approachResearchRiskRisk FactorsSalivaScanningSecondary PreventionSiteStructureStudy SubjectSymptomsTestingTherapeuticTimeTrainingUnited States National Institutes of HealthValidationaging brainbasebig biomedical datacase controlclinical predictorsclinical riskcognitive abilitycognitive testingdata miningflexibilityfunctional disabilitygenetic testinggenome-widegenomic datagenomic locushigh dimensionalityimaging biomarkerimaging geneticsimprovedinnovationlarge scale datamachine learning algorithmmachine learning methodmild cognitive impairmentmultidimensional datamultimodal datamultimodalityneuroimagingnovelpre-clinicalpredictive modelingprognosticprognostic modelrisk minimizationserial imagingsexsoftware developmentsoundtoolwhole genome
项目摘要
ABSTRACT
The “preclinical” phase of Alzheimer’s disease (AD) is characterized by abnormal levels of brain
amyloid accumulation in the absence of major symptoms, can last decades, and potentially holds the
key to successful therapeutic strategies. Today there is an urgent need for quantitative biomarkers
and genetic tests that can predict clinical progression at the individual level. This project will develop
cutting edge machine learning algorithms that will mine high dimensional, multi-modal, and
longitudinal data to derive models that yield individual-level clinical predictions in the context of
dementia. The developed prognostic models will specifically utilize ubiquitous and affordable data
types: structural brain MRI scans, saliva or blood-derived genome-wide sequence data, and
demographic variables (age, education, and sex). Prior research has demonstrated that all these
variables are strongly associated with clinical decline to dementia, however to date we have no model
that can harvest all the predictive information embedded in these high dimensional data.
Machine learning (ML) algorithms are increasingly used to compute clinical predictions from high-
dimensional biomedical data such as clinical scans. Yet, most prior ML methods were developed for
applications where the ``prediction’’ task was about concurrent condition (e.g., discriminate cases and
controls); and established risk factors (e.g., age), multiple modalities (e.g., genotype and images) and
longitudinal data were not fully exploited. This application’s core innovation will be to develop
rigorous, flexible, and practical ML methods that can fully exploit multi-modal, longitudinal, and high-
dimensional biomedical data to compute prognostic clinical predictions.
The proposed project will build on the PI’s strong background in computational modeling and analysis
of large-scale biomedical data. We will employ an innovative Bayesian ML framework that offers the
flexibility to handle and exploit real-life longitudinal and multi-modal data. We hypothesize that the
developed models will be more useful than alternative benchmarks for identifying preclinical
individuals who are at heightened risk of imminent clinical decline. We will use a statistically rigorous
approach for discovery, cross-validation, and benchmarking the developed tools. This project will
yield freely distributed, documented, and validated software and models for predicting future clinical
progression based on whole-genome, longitudinal structural MRI and demographic data. We believe
the algorithms and software we develop will yield invaluable tools for stratifying preclinical AD
subjects in drug trials, optimizing future therapies, and minimizing the risk of adverse effects.
抽象的
阿尔茨海默病 (AD) 的“临床前”阶段的特点是脑部异常水平
在没有主要症状的情况下,淀粉样蛋白的积累可以持续数十年,并有可能保持
成功治疗策略的关键。如今迫切需要定量生物标志物
以及可以预测个体水平临床进展的基因测试。该项目将开发
尖端的机器学习算法将挖掘高维、多模态和
纵向数据来导出模型,在以下情况下产生个体水平的临床预测
失智。开发的预测模型将专门利用无处不在且负担得起的数据
类型:结构性脑部 MRI 扫描、唾液或血液来源的全基因组序列数据,以及
人口变量(年龄、教育程度和性别)。先前的研究表明,所有这些
变量与痴呆症的临床衰退密切相关,但迄今为止我们还没有模型
可以收获这些高维数据中嵌入的所有预测信息。
机器学习 (ML) 算法越来越多地用于计算来自高水平的临床预测。
三维生物医学数据,例如临床扫描。然而,大多数先前的机器学习方法都是为
“预测”任务与并发条件有关的应用程序(例如,区分案例和
控制);和既定的风险因素(例如年龄)、多种模式(例如基因型和图像)和
纵向数据没有得到充分利用。该应用程序的核心创新将是开发
严谨、灵活、实用的机器学习方法,可以充分利用多模态、纵向和高阶特征
多维生物医学数据来计算预后临床预测。
拟议的项目将建立在 PI 在计算建模和分析方面的强大背景之上
大规模生物医学数据。我们将采用创新的贝叶斯机器学习框架,该框架提供
灵活地处理和利用现实生活中的纵向和多模式数据。我们假设
开发的模型将比用于识别临床前的替代基准更有用
临床即将衰退的风险较高的个人。我们将使用严格的统计方法
发现、交叉验证和对已开发工具进行基准测试的方法。该项目将
产生免费分发、记录和验证的软件和模型,用于预测未来的临床
基于全基因组、纵向结构 MRI 和人口统计数据的进展。我们相信
我们开发的算法和软件将为临床前 AD 分层提供宝贵的工具
药物试验中的受试者,优化未来的治疗方法,并最大限度地减少不良反应的风险。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mert Rory Sabuncu其他文献
Mert Rory Sabuncu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mert Rory Sabuncu', 18)}}的其他基金
Advanced machine learning algorithms that integrate genomewide, longitudinal MRI and demographic data to predict future cognitive decline toward dementia
先进的机器学习算法,集成全基因组、纵向 MRI 和人口统计数据,以预测未来痴呆症的认知能力下降
- 批准号:
9307096 - 财政年份:2017
- 资助金额:
$ 41万 - 项目类别:
Multivariate Pattern Analysis Methods for Neuroimaging Genetics Studies
神经影像遗传学研究的多变量模式分析方法
- 批准号:
8535152 - 财政年份:2011
- 资助金额:
$ 41万 - 项目类别:
Multivariate Pattern Analysis Methods for Neuroimaging Genetics Studies
神经影像遗传学研究的多变量模式分析方法
- 批准号:
8726983 - 财政年份:2011
- 资助金额:
$ 41万 - 项目类别:
Multivariate Pattern Analysis Methods for Neuroimaging Genetics Studies
神经影像遗传学研究的多变量模式分析方法
- 批准号:
8308347 - 财政年份:2011
- 资助金额:
$ 41万 - 项目类别:
Multivariate Pattern Analysis Methods for Neuroimaging Genetics Studies
神经影像遗传学研究的多变量模式分析方法
- 批准号:
8916113 - 财政年份:2011
- 资助金额:
$ 41万 - 项目类别:
Multivariate Pattern Analysis Methods for Neuroimaging Genetics Studies
神经影像遗传学研究的多变量模式分析方法
- 批准号:
8165447 - 财政年份:2011
- 资助金额:
$ 41万 - 项目类别:
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别:
Adverse Effects of Using Laser Diagnostics in High-Speed Compressible Flows
在高速可压缩流中使用激光诊断的不利影响
- 批准号:
RGPIN-2018-04753 - 财政年份:2022
- 资助金额:
$ 41万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




