Multi-modal Prediction of Future Clinical Dementia
未来临床痴呆的多模式预测
基本信息
- 批准号:9033273
- 负责人:
- 金额:$ 25.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAdvocateAgeAlgorithmsAlzheimer&aposs DiseaseAmyloidAtrophicBehavioralBenchmarkingBiological MarkersBoxingBrainCerebrumClinicalComputer SimulationDataData AggregationData AnalysesData SetDementiaDisease ProgressionEventFundingFutureGeneticGenetic MarkersGenetic Predisposition to DiseaseGenetic screening methodGenomeGoalsHeterogeneityImageImpaired cognitionIndividualLaboratoriesLate Onset Alzheimer DiseaseMRI ScansMachine LearningMagnetic Resonance ImagingMeasurementMedicineMethodsModalityModelingNerve DegenerationOnset of illnessPathologyPatternPerformancePharmaceutical PreparationsPhasePrincipal InvestigatorProcessRiskRisk FactorsScanningSumSymptomsTechniquesTechnologyTestingTherapeuticTherapeutic InterventionTimeTrainingUnited States National Institutes of HealthValidationVariantamyloid pathologybasecase controlcognitive testingcohortdata miningdetectorextracellularflexibilitygenetic risk factorgenetic variantgenome wide association studygenome-wideimprintimprovedlearning strategylongitudinal designmild cognitive impairmentneuroimagingnovelpre-clinicalprediction algorithmpredictive modelingprognosticpublic health relevancetau Proteinstool
项目摘要
DESCRIPTION (provided by applicant): The process of Alzheimer's disease (AD), the most common form of dementia, is thought to begin years before symptoms. This "preclinical" phase, characterized by abnormal levels of brain amyloid accumulation consistent with AD, holds the key to identifying causes and developing therapeutic strategies. In the absence of sensitive and specific behavioral/cognitive tests, quantitative biomarkers and genetic tests will be critical for
stratified medicine in preclinical AD. This project will examine two high-dimensional data modalities, namely structural brain MRI scans and genome-wide SNP data, in order to derive tools to compute individual-level predictions about future dementia onset. AD imprints a unique atrophy signature on the brain discernable in structural MRI scans. Converging data suggest that AD-associated atrophy is detectable years before clinical symptoms. The machine learning (or pattern analysis) approach, which our laboratory has advocated in neuroimage analysis, offers highly sensitive and specific atrophy detectors. We hypothesize these tools will be invaluable for identifying preclinical AD subjects who are at increased risk of dementia onset. Late-onset AD (LOAD), which represents >95% of all AD cases, is up to 70% heritable. In addition to APOE4, the major genetic risk factor, recent genome-wide association studies (GWAS) have identified a growing list of other common genetic variants associated with LOAD. The complexity of LOAD's genetic underpinnings suggests that sophisticated models that aggregate data across the genome might help us explain some of the variability in disease progression. Developing such models using state-of-the-art machine learning technology and leveraging already-collected large-scale datasets is one of our main aims in this proposal. The proposed project will build on the principal investigator's (Sabuncu) strong background in computational modeling and machine learning to conduct analyses using cutting-edge methods on large-scale data. We will use multi-modal data, including neuroimaging and GWAS data, to develop and validate models that predict future decline in preclinical LOAD. Our method of choice will be a novel Bayesian ML algorithm, specifically designed for longitudinal data. We hypothesize that the developed models will be more useful than alternatives (constructed by discriminating cases and controls) for identifying "amyloid positive" individuals who are at heightened risk of imminent clinical decline. We will use a multi-level approach for discovery and validation and a multi-modal strategy to test our hypothesis.
描述(由申请人提供):阿尔茨海默病(AD)是最常见的痴呆形式,其过程被认为在症状出现前开始多年。这个“临床前”阶段的特征是与AD一致的脑淀粉样蛋白积累的异常水平,这是确定病因和开发治疗策略的关键。在缺乏敏感和特异性的行为/认知测试的情况下,定量生物标志物和基因测试将是至关重要的,
临床前AD的分层用药该项目将研究两种高维数据模式,即结构性脑MRI扫描和全基因组SNP数据,以获得计算未来痴呆发作的个人水平预测的工具。AD在大脑上留下了一个独特的萎缩特征,在结构MRI扫描中可以识别。汇聚的数据表明,AD相关的萎缩是可检测的临床症状前几年。我们实验室在神经影像分析中提倡的机器学习(或模式分析)方法提供了高度敏感和特异性的萎缩检测器。我们假设这些工具将是非常宝贵的识别临床前AD受试者谁是在痴呆发作的风险增加。迟发性AD(LOAD)占所有AD病例的95%以上,高达70%是遗传性的。除了主要的遗传风险因子APOE 4之外,最近的全基因组关联研究(GWAS)已经确定了越来越多的与LOAD相关的其他常见遗传变异。LOAD基因基础的复杂性表明,将整个基因组的数据聚合起来的复杂模型可能有助于我们解释疾病进展中的一些变异性。使用最先进的机器学习技术开发这样的模型,并利用已经收集的大规模数据集,是我们这项提议的主要目标之一。拟议的项目将建立在首席研究员(Sabuncu)在计算建模和机器学习方面的强大背景基础上,使用尖端方法对大规模数据进行分析。我们将使用多模态数据,包括神经成像和GWAS数据,来开发和验证预测临床前负荷未来下降的模型。我们选择的方法将是一种新的贝叶斯ML算法,专门为纵向数据设计。我们假设,开发的模型将是更有用的替代品(通过区分病例和对照组构建),以确定“淀粉样蛋白阳性”的个人谁是在即将到来的临床下降的风险增加。我们将使用多层次的方法进行发现和验证,并使用多模态策略来测试我们的假设。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mert Rory Sabuncu其他文献
Mert Rory Sabuncu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mert Rory Sabuncu', 18)}}的其他基金
Advanced machine learning algorithms that integrate genomewide, longitudinal MRI and demographic data to predict future cognitive decline toward dementia
先进的机器学习算法,集成全基因组、纵向 MRI 和人口统计数据,以预测未来痴呆症的认知能力下降
- 批准号:
9307096 - 财政年份:2017
- 资助金额:
$ 25.65万 - 项目类别:
Advanced machine learning algorithms that integrate genomewide, longitudinal MRI and demographic data to predict future cognitive decline toward dementia
先进的机器学习算法,集成全基因组、纵向 MRI 和人口统计数据,以预测未来痴呆症的认知能力下降
- 批准号:
10188360 - 财政年份:2017
- 资助金额:
$ 25.65万 - 项目类别:
Multivariate Pattern Analysis Methods for Neuroimaging Genetics Studies
神经影像遗传学研究的多变量模式分析方法
- 批准号:
8535152 - 财政年份:2011
- 资助金额:
$ 25.65万 - 项目类别:
Multivariate Pattern Analysis Methods for Neuroimaging Genetics Studies
神经影像遗传学研究的多变量模式分析方法
- 批准号:
8726983 - 财政年份:2011
- 资助金额:
$ 25.65万 - 项目类别:
Multivariate Pattern Analysis Methods for Neuroimaging Genetics Studies
神经影像遗传学研究的多变量模式分析方法
- 批准号:
8308347 - 财政年份:2011
- 资助金额:
$ 25.65万 - 项目类别:
Multivariate Pattern Analysis Methods for Neuroimaging Genetics Studies
神经影像遗传学研究的多变量模式分析方法
- 批准号:
8916113 - 财政年份:2011
- 资助金额:
$ 25.65万 - 项目类别:
Multivariate Pattern Analysis Methods for Neuroimaging Genetics Studies
神经影像遗传学研究的多变量模式分析方法
- 批准号:
8165447 - 财政年份:2011
- 资助金额:
$ 25.65万 - 项目类别:
相似海外基金
Optimizing Health and Well-Being of Diverse Mothers with IDD and Their Infants During the Perinatal Period: A Virtual Advocate Tool for Data-Driven Supports
优化患有 IDD 的不同母亲及其婴儿在围产期的健康和福祉:用于数据驱动支持的虚拟倡导工具
- 批准号:
10760051 - 财政年份:2023
- 资助金额:
$ 25.65万 - 项目类别:
POSE: Phase II: Advocate Led Long-term Gameplan for Open OnDemand (ALL GOOD)
POSE:第二阶段:倡导者主导 Open OnDemand 的长期游戏计划(一切顺利)
- 批准号:
2303692 - 财政年份:2023
- 资助金额:
$ 25.65万 - 项目类别:
Standard Grant
Capitalising on our differences: A gathering to better understand and advocate for Early Career Health Researchers in Canada
利用我们的差异:更好地理解和倡导加拿大早期职业健康研究人员的聚会
- 批准号:
468168 - 财政年份:2022
- 资助金额:
$ 25.65万 - 项目类别:
Miscellaneous Programs
Addressing social adversity to improve outcomes among children undergoing liver transplant: the role for a health advocate on the transplant team
解决社会逆境以改善接受肝移植的儿童的预后:移植团队中健康倡导者的作用
- 批准号:
10427960 - 财政年份:2022
- 资助金额:
$ 25.65万 - 项目类别:
Evaluating an ACEs-Targeting Advocate Model of a Substance Use Prevention Program
评估药物使用预防计划的针对 ACE 的倡导者模型
- 批准号:
10577074 - 财政年份:2022
- 资助金额:
$ 25.65万 - 项目类别:
The Art of Creation: Using Art-Based Knowledge Translation to Promote and Advocate for a Healthy Start to Life
创造的艺术:利用基于艺术的知识转化来促进和倡导健康的生命开端
- 批准号:
486588 - 财政年份:2022
- 资助金额:
$ 25.65万 - 项目类别:
Studentship Programs
When I am Old, I shall Wear Purple Nail Varnish: Utilising performance art to construct queer spaces that celebrate and advocate for ageing bodies
当我老了,我要涂紫色指甲油:利用行为艺术构建酷儿空间,庆祝和倡导衰老的身体
- 批准号:
2760091 - 财政年份:2022
- 资助金额:
$ 25.65万 - 项目类别:
Studentship
Addressing social adversity to improve outcomes among children undergoing liver transplant: the role for a health advocate on the transplant team
解决社会逆境以改善接受肝移植的儿童的预后:移植团队中健康倡导者的作用
- 批准号:
10621188 - 财政年份:2022
- 资助金额:
$ 25.65万 - 项目类别:
Techquity by FAITH!: A cluster randomized controlled trial to assess the efficacy of a community-informed, cardiovascular health promotion mobile hlth intervention with digital health advocate support
Techquity by FAITH!:一项整群随机对照试验,旨在评估社区知情、心血管健康促进移动 hlth 干预措施在数字健康倡导者支持下的效果
- 批准号:
10891016 - 财政年份:2021
- 资助金额:
$ 25.65万 - 项目类别:
CMV responses in autoantibody positive subjects advocate antiviral treatments for prevention of T1D
自身抗体阳性受试者的 CMV 反应主张抗病毒治疗以预防 T1D
- 批准号:
10230365 - 财政年份:2020
- 资助金额:
$ 25.65万 - 项目类别: