Synaptic Microcircuits Underlying Associative Learning
关联学习背后的突触微电路
基本信息
- 批准号:10187661
- 负责人:
- 金额:$ 39.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAnimal ModelAnimalsAnxietyBehavioralBrainBrain regionCellsChemosensitizationClinicalCuesDataDrosophila genusExhibitsExtinction (Psychology)FailureGeneticGoalsImageInterneuronsLearningLearning DisordersMeasuresMemoryMental DepressionMental disordersModelingMolecularMushroom BodiesNervous system structureNeuronal PlasticityNeuronsOdorsOutputPhasePlayRecurrenceResolutionRewardsRoleSchizophreniaSensoryShockSignal TransductionSynapsesTestingUpdateVisualizationbasecell typeclassical conditioningdesigndopaminergic neuronexperimental studyflexibilityflyin vivoinsightlearning extinctionnoveloptogeneticsrelating to nervous systemresponsetoolvoltage
项目摘要
Animals learn to associate otherwise neutral sensory cues with positive or negative contingencies and rely
on those associations to make adaptive decisions. Flexible updating of these acquired associations as
contingencies change is also important. Failure to update internal representations plays a causal role in some
mental disorders, including schizophrenia and anxiety. While the neural substrates of acquiring and updating
associations have been studied in mammalian models, the complexity of the mammalian brain has made it
difficult to obtain precise cellular and synaptic mechanistic understanding. Drosophila flies exhibit flexible
associative learning: they learn to avoid an odor paired with electric shock, and extinguish that learned
association when the odor is later presented without shock. Flies have powerful genetic tools to allow precise
manipulation and visualization of neural activity with cellular resolution in the mushroom body brain region
(MB), where neural plasticity underlying learning occurs. Our long-term goal is to use Drosophila to gain
mechanistic insight into how acquisition and extinction are implemented by synaptic microcircuits of the MB.
Our novel hypothesis is that plasticity of dopamine neurons embedded in a recurrent synaptic microcircuit
residing in the fly mushroom body underlies extinction of odor-shock associations. To test this hypothesis we
employ in vivo Ca2+ imaging and optogenetics to visualize and manipulate dynamic changes in neural activity
of specific genetically targeted MB cell types as a fly acquires and extinguishes an association between a neutral
odor and aversive electric shock.
动物学会将其他中性的感官暗示与积极或消极的偶然性联系起来,并依赖于
做出适应性决策。将这些已获得的关联灵活更新为
意外情况的变化也很重要。未能更新内部表示在某些情况下起到了因果作用
精神障碍,包括精神分裂症和焦虑。而获取和更新的神经底物
在哺乳动物模型中已经研究过关联,哺乳动物大脑的复杂性使其
很难获得准确的细胞和突触机制的了解。果蝇表现出柔韧性
联想学习:他们学会避免伴随着电击的气味,并消除所学到的气味
当气味随后呈现时,没有电击,就会产生联想。苍蝇拥有强大的基因工具,可以精确地
利用细胞分辨率操纵和可视化蘑菇体脑区域的神经活动
(MB),学习发生神经可塑性的地方。我们的长期目标是利用果蝇来获得
机械洞察获得和灭绝是如何通过MB的突触微电路实现的。
我们的新假设是,多巴胺神经元的可塑性嵌入到一个经常性的突触微电路中
生活在苍蝇蘑菇体内是气味-休克联系消亡的基础。为了检验这一假设,我们
利用体内钙离子成像和光遗传学来可视化和操纵神经活动的动态变化
当苍蝇获得和消除中性细胞之间的关联时,特定的基因靶向MB细胞类型的
气味和令人厌恶的电击。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Nitabach其他文献
Michael Nitabach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Nitabach', 18)}}的其他基金
Biological Mechanisms of Food-Related Decision Making
食品相关决策的生物学机制
- 批准号:
10707023 - 财政年份:2022
- 资助金额:
$ 39.14万 - 项目类别:
Biological Mechanisms of Food-Related Decision Making
食品相关决策的生物学机制
- 批准号:
10405938 - 财政年份:2022
- 资助金额:
$ 39.14万 - 项目类别:
Synaptic Microcircuits Underlying Associative Learning
关联学习背后的突触微电路
- 批准号:
10642762 - 财政年份:2014
- 资助金额:
$ 39.14万 - 项目类别:
Synaptic Microcircuits Underlying Associative Learning
关联学习背后的突触微电路
- 批准号:
10427181 - 财政年份:2014
- 资助金额:
$ 39.14万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 39.14万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 39.14万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 39.14万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 39.14万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 39.14万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 39.14万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 39.14万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 39.14万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 39.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 39.14万 - 项目类别:
Grant-in-Aid for Early-Career Scientists