Integrating epidemiologic, clinical, genomic and metabolomic profiles to predict pancreatic cancer risk in a multiethnic population
整合流行病学、临床、基因组和代谢组学特征来预测多种族人群的胰腺癌风险
基本信息
- 批准号:10352444
- 负责人:
- 金额:$ 11.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-15 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:African American populationAmino AcidsAsiaAsian ancestryAsian populationBiologicalBiological AssayBiological MarkersBlood specimenCaliforniaCancer EtiologyCaucasiansCessation of lifeClinicalClinical DataCohort StudiesDataData AnalysesDatabasesDiagnosisDiagnosticDiseaseEarly DiagnosisEpidemiologyEthnic OriginEtiologyEuropeEuropeanEvaluationFunctional disorderGastrointestinal DiseasesGeneticGenomicsHealthHospitalsIncidenceIndividualJapanese AmericanLife StyleLightMalignant NeoplasmsMalignant neoplasm of pancreasMedical GeneticsMedicare claimMentorsMetabolicMetabolic syndromeMinorityMinority GroupsModelingNative HawaiianOrganPancreasParticipantPathogenesisPathway interactionsPatternPerformancePhasePopulationPopulation HeterogeneityPreventionPrognosisProspective cohortQuestionnairesRaceResearchResearch DesignResourcesRiskRisk FactorsRunningSamplingScreening for cancerStandardizationSubgroupSurvival RateSystems BiologyTechniquesUnited Statesassociated symptombasebiobankcancer riskcohortdesignepidemiologic datagastrointestinal symptomgenetic variantgenome-widegenomic datahigh riskimprovedinsightmetabolomicsmortalitymulti-ethnicneoplasm registrynovelpancreatic cancer modelpredictive modelingracial diversityrisk prediction modelrisk stratificationsex
项目摘要
ABSTRACT
Pancreatic cancer is a highly lethal malignancy that has a very poor prognosis in the United States. It has a 5-
year survival rate of only 9% and is projected to become the second most common cancer death by 2030.
Pancreatic cancer also has a disproportionate burden across race/ethnicity, with higher incidence rates observed
among minority groups, such African Americans, Japanese Americans, and Native Hawaiians. Past prediction
models have been developed to identify high-risk individuals and improve the earlier detection of this disease.
However, these models were designed in individuals of primarily European or Asian ancestry and have not been
validated in multiethnic populations. In addition, these models included mainly known epidemiologic risk factors
and only a few incorporated data on genetic variants or health conditions. Thus, a model that employs more
granular data, such as comorbidities/symptoms, genomics and metabolomics, for the prediction of pancreatic
cancer across multiple races/ethnicities does not exist. In this study, we seek to apply an integrative systems
biology approach to enhance the prediction of pancreatic cancer risk using data from the Multiethnic Cohort
(MEC) Study. The MEC is a long-standing prospective cohort of over 215,000 racially diverse individuals that
has comprehensive lifestyle, environmental, clinical, and genetic data. We will use data from existing resources
of the MEC, including epidemiologic risk factors from questionnaires, clinical health conditions from Medicare
claims, genetic data from a large biorepository of blood samples, and cancer incidence and mortality information
from SEER Cancer registries and state and national mortality databases. We will also generate new metabolomic
data for a subset of MEC participants. Our specific aims are: 1) to identify clusters or patterns of clinical conditions
associated with pancreatic cancer risk; 2) to validate existing prediction models in a multiethnic population and
develop an enhanced prediction model that incorporates epidemiologic, clinical and genomic data; 3) to identify
metabolites associated with pancreatic cancer in a multiethnic population; and 4) to integrate epidemiologic,
clinical, genomic and metabolomic data to identify individuals at high risk of pancreatic cancer. Results from this
study are expected to elucidate etiologic mechanisms and improve the prediction of pancreatic cancer risk for
heterogeneous populations. This will have significant implications for improving strategies for earlier detection
and reducing the overwhelming burden of this fatal cancer.
摘要
胰腺癌是一种高度致命的恶性肿瘤,在美国预后非常差。它有一个5-
一年存活率仅为9%,预计到2030年将成为第二大常见癌症死亡病例。
胰腺癌在不同种族/民族之间也有不成比例的负担,观察到更高的发病率。
在少数群体中,如非裔美国人、日裔美国人和夏威夷土著人。过去的预测
已经开发了一些模型来识别高危个体,并改进对这种疾病的早期检测。
然而,这些模型主要是由欧洲或亚洲血统的人设计的,并没有
在多民族人群中得到验证。此外,这些模型主要包括已知的流行病学风险因素。
而且只有几个人纳入了关于基因变异或健康状况的数据。因此,一种使用更多
细粒数据,如合并症/症状、基因组学和代谢组学,用于预测胰腺疾病
不存在跨越多个种族/民族的癌症。在这项研究中,我们试图应用一种综合的系统
使用多种族队列数据加强胰腺癌风险预测的生物学方法
(MEC)研究。MEC是一个由超过215,000名不同种族的人组成的长期预期队列,
拥有全面的生活方式、环境、临床和遗传数据。我们将使用现有资源中的数据
包括调查问卷中的流行病学危险因素、医疗保险中的临床健康状况
声称,来自大型血液样本生物仓库的基因数据,以及癌症发病率和死亡率信息
来自SEER癌症登记和州和国家死亡率数据库。我们还将产生新的新陈代谢
MEC参与者子集的数据。我们的具体目标是:1)确定临床条件的群组或模式
与胰腺癌风险相关;2)在多种族人群中验证现有预测模型,并
开发结合流行病学、临床和基因组数据的增强预测模型;3)确定
与多种族人群中的胰腺癌相关的代谢物;以及4)整合流行病学,
临床、基因组和代谢数据,以确定胰腺癌高危个体。由此产生的结果
这项研究有望阐明胰腺癌的病因机制,并提高对胰腺癌风险的预测。
异质种群。这将对改进早期检测策略具有重要意义
并减轻这种致命癌症的压倒性负担。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Healthcare Utilization Among Patients Diagnosed with COVID-19 in a Large Integrated Health System.
大型综合卫生系统中诊断为COVID-19的患者的医疗保健利用。
- DOI:10.1007/s11606-021-07139-z
- 发表时间:2022-03
- 期刊:
- 影响因子:5.7
- 作者:Huang BZ;Creekmur B;Yoo MS;Broder B;Subject C;Sharp AL
- 通讯作者:Sharp AL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Huang其他文献
Brian Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Huang', 18)}}的其他基金
Integrating epidemiologic, clinical, genomic and metabolomic profiles to predict pancreatic cancer risk in a multiethnic population
整合流行病学、临床、基因组和代谢组学特征来预测多种族人群的胰腺癌风险
- 批准号:
10745361 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Integrating epidemiologic, clinical, genomic and metabolomic profiles to predict pancreatic cancer risk in a multiethnic population
整合流行病学、临床、基因组和代谢组学特征来预测多种族人群的胰腺癌风险
- 批准号:
10115540 - 财政年份:2021
- 资助金额:
$ 11.99万 - 项目类别:
相似海外基金
Double Incorporation of Non-Canonical Amino Acids in an Animal and its Application for Precise and Independent Optical Control of Two Target Genes
动物体内非规范氨基酸的双重掺入及其在两个靶基因精确独立光学控制中的应用
- 批准号:
BB/Y006380/1 - 财政年份:2024
- 资助金额:
$ 11.99万 - 项目类别:
Research Grant
Quantifying L-amino acids in Ryugu to constrain the source of L-amino acids in life on Earth
量化 Ryugu 中的 L-氨基酸以限制地球生命中 L-氨基酸的来源
- 批准号:
24K17112 - 财政年份:2024
- 资助金额:
$ 11.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
- 批准号:
2300890 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Continuing Grant
Basic research toward therapeutic strategies for stress-induced chronic pain with non-natural amino acids
非天然氨基酸治疗应激性慢性疼痛策略的基础研究
- 批准号:
23K06918 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms how arrestins that modulate localization of glucose transporters are phosphorylated in response to amino acids
调节葡萄糖转运蛋白定位的抑制蛋白如何响应氨基酸而被磷酸化的分子机制
- 批准号:
23K05758 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular recognition and enantioselective reaction of amino acids
氨基酸的分子识别和对映选择性反应
- 批准号:
23K04668 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design and Synthesis of Fluorescent Amino Acids: Novel Tools for Biological Imaging
荧光氨基酸的设计与合成:生物成像的新工具
- 批准号:
2888395 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Studentship
Structurally engineered N-acyl amino acids for the treatment of NASH
用于治疗 NASH 的结构工程 N-酰基氨基酸
- 批准号:
10761044 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Lifestyle, branched-chain amino acids, and cardiovascular risk factors: a randomized trial
生活方式、支链氨基酸和心血管危险因素:一项随机试验
- 批准号:
10728925 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 11.99万 - 项目类别: