Acyl-CoA synthetase-mediated regulation of lipid homeostasis
酰基辅酶A合成酶介导的脂质稳态调节
基本信息
- 批准号:10189414
- 负责人:
- 金额:$ 12.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:Acyl Coenzyme AAddressAnabolismBiochemicalCRISPR/Cas technologyCardiovascular DiseasesCellsClinicalCoenzyme ACoenzyme A LigasesComplexDataDependovirusDevelopmentDietDiseaseDrug or chemical Tissue DistributionDyslipidemiasEnvironmentEnzymesEtiologyExhibitsFatty AcidsFatty LiverGenesGenome engineeringGoalsHepaticHepatocyteHomeostasisHumanHypertriglyceridemiaIn VitroIndividualInsulin ResistanceKnock-outKnockout MiceKnowledgeLife StyleLipidsLiverLiver diseasesLocationMediatingMentorsMetabolicMetabolic DiseasesMetabolic PathwayMetabolic syndromeMetabolismMolecularMusNon-Insulin-Dependent Diabetes MellitusNonesterified Fatty AcidsObesityOrganOvernutritionPathogenesisPathogenicityPathologyPathway interactionsPatientsPharmacotherapyPlasmaPrevention strategyProtein IsoformsPublic HealthReactionRegulationResearchRiskRoleSignal TransductionSystemTestingTherapeuticTriglyceridesUnited States National Institutes of HealthVery low density lipoproteinadeno-associated viral vectorcareer developmentchronic liver diseaseclinically relevantcomorbiditydesignexperiencehumanized mousein vivointrahepaticlipid biosynthesislipid metabolismlong chain fatty acidnon-alcoholic fatty liver diseasenovelnovel therapeutic interventionobesity managementoxidationpreferencepreventprogramsresponseskillstargeted treatmenttraining opportunityuptake
项目摘要
PROJECT SUMMARY / ABSTRACT
Systemic lipid homeostasis is controlled by the liver via complex but precisely regulated biochemical, signaling,
and cellular pathways. In obesity, hepatic lipid metabolism is altered, commonly leading to the pathogenic
accumulation of triacylglycerol and to a spectrum of liver disorders known as non-alcoholic fatty liver disease
(NAFLD). NAFLD is considered the hepatic manifestation of metabolic syndrome; as such, it often occurs in a
setting of insulin resistance and is associated with type 2 diabetes, dyslipidemia, and cardiovascular disease. It
is the most prevalent chronic liver disease worldwide, for which there is no approved pharmacotherapy. The
etiology of NAFLD is still unclear and advances in understanding the molecular mechanisms leading to hepatic
triacylglycerol accumulation are critical to the development of targeted therapies. Within the hepatocyte, free
fatty acid molecules experience one of several metabolic fates, including synthesis of complex lipids and
oxidation. An obligatory step in the metabolism of long-chain fatty acids is its activation by thioesterification to
CoA to form acyl-CoA. This reaction is catalyzed by the acyl-CoA synthetase (ACSL) enzymes. The specific
tissue distributions, subcellular locations, and substrate preferences suggest that individual ACSL isoforms have
distinct metabolic functions in partitioning acyl-CoAs into specific metabolic pathways. ACSL3 and ACSL5
isoforms are highly expressed in human and murine livers and studies in cell systems suggest that these
enzymes promote lipogenesis. However, to date, the metabolic roles of ACSL3 and ACSL5 in the liver in vivo
remain unresolved. We hypothesize that ACSL3 and ACSL5 function in the liver to direct acyl-CoA towards lipid
synthesis and away from oxidative pathways, thereby promoting hepatic triacylglycerol accumulation and VLDL
secretion. In Aim 1, we will use AAV-CRISPR/Cas9 technology to generate the first liver-specific knockout mice
for Acsl3 and Acsl5 to test the hypothesis that ACSL3 and ACSL5 activities in the liver contribute to the synthesis
of triacylglycerol, which in turn leads to hepatic steatosis and hypertriglyceridemia. In Aim 2, we will establish the
roles of ACSL3 and ACSL5 in human NAFLD pathogenesis by using AAV-CRISPR/Cas9 to achieve liver-specific
knockout of ACSL3 and ACSL5 in human liver chimeric mice. The proposed research delineates hepatocellular
basis contributing to the progression of metabolic diseases, which is clinically important as it provides new targets
for the management of obesity-related disorders such as NAFLD and dyslipidemia. In addition, this project
provides an intensive research career development training opportunity under the guidance of experienced
mentors in an outstanding scientific environment. This will allow me to consolidate and launch my independent
research program dedicated to the understanding of the molecular basis for human metabolic disorders. The
successful completion of these studies will: (i) provide me with knowledge and skills in liver-targeted genome
engineering and its application to clinically relevant human liver disorders; and (ii) inform an NIH R01 application
for the study of pathophysiological mechanisms that regulate hepatic lipid homeostasis.
项目总结/摘要
全身脂质稳态由肝脏通过复杂但精确调节的生化信号传导控制,
和细胞途径。在肥胖症中,肝脏脂质代谢改变,通常导致致病性
三酰甘油的积累和一系列称为非酒精性脂肪性肝病的肝脏疾病
(NAFLD)。NAFLD被认为是代谢综合征的肝脏表现;因此,它经常发生在一个
胰岛素抵抗的发生与2型糖尿病、血脂异常和心血管疾病有关。它
是世界上最普遍的慢性肝病,目前还没有批准的药物治疗。的
NAFLD的病因仍不清楚,在理解导致肝纤维化的分子机制方面取得了进展。
三酰甘油积累对靶向治疗的发展至关重要。在肝细胞内,游离
脂肪酸分子经历几种代谢命运之一,包括合成复合脂质,
氧化长链脂肪酸代谢中的一个必要步骤是通过硫代酯化作用活化,
CoA形成酰基-CoA。该反应由酰基辅酶A合成酶(ACSL)催化。具体
组织分布、亚细胞位置和底物偏好表明,单个ACSL亚型具有
在将酰基辅酶A分配到特定的代谢途径中具有不同的代谢功能。ACSL 3和ACSL 5
同种型在人和鼠的肝脏中高度表达,并且细胞系统中的研究表明,这些同种型
酶促进脂肪生成。然而,迄今为止,ACSL 3和ACSL 5在体内肝脏中的代谢作用
仍然没有解决。我们假设ACSL 3和ACSL 5在肝脏中起作用,将酰基辅酶A导向脂质,
合成和远离氧化途径,从而促进肝脏甘油三酯积累和VLDL
分泌物在目标1中,我们将使用AAV-CRISPR/Cas9技术产生第一个肝脏特异性敲除小鼠
对于Acsl 3和Acsl 5,以检验ACSL 3和ACSL 5在肝脏中的活性有助于合成的假设
三酰甘油,这反过来又导致肝脂肪变性和高甘油三酯血症。在目标2中,我们将建立
ACSL 3和ACSL 5在人类NAFLD发病机制中的作用,通过使用AAV-CRISPR/Cas9来实现肝脏特异性
在人肝嵌合小鼠中敲除ACSL 3和ACSL 5。拟议的研究描绘了肝细胞
基础有助于代谢疾病的进展,这是临床上重要的,因为它提供了新的目标
用于管理肥胖相关疾病,如NAFLD和血脂异常。此外,该项目
提供了一个密集的研究职业发展培训的机会,在经验丰富的指导下,
导师在一个优秀的科学环境。这将使我能够巩固和推出我的独立
致力于了解人类代谢障碍分子基础的研究项目。的
成功完成这些研究将:(i)为我提供肝脏靶向基因组方面的知识和技能
工程及其在临床相关人类肝脏疾病中的应用;以及(ii)通知NIH R 01申请
用于研究调节肝脏脂质稳态的病理生理学机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michele Alves-Bezerra其他文献
Michele Alves-Bezerra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 12.72万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 12.72万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 12.72万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 12.72万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 12.72万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 12.72万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 12.72万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 12.72万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 12.72万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 12.72万 - 项目类别:
Research Grant