Synaptic and cellular mechanisms of neuronal synchronization

神经元同步的突触和细胞机制

基本信息

项目摘要

Project Summary/Abstract Neuronal activity must be precisely coordinated to provide an accurate representation of our environment, a feature exemplified by the electrical patterns measured in the brain during spatial navigation and memory retrieval. While the activity of individual neurons is tuned to specific features such as physical location or speed, simultaneous observations at the network level reveals electrical oscillations reflecting the coordinated activity of thousands of neurons. Therefore, a central goal of neuroscience is to understand how network activity emerges from the interactions between individual neurons. The neuronal architecture is relatively well-conserved across multiple brain regions: a population of highly heterogenous inhibitory interneurons (INs) with dense connectivity control a large population of excitatory neurons. Thus, the mechanisms controlling INs themselves are poised to have a dramatic impact on network activity. Previous studies support the existence of small populations of INs that selectively synapse onto other INs. These relatively sparse INs operate disinhibitory networks that could have a profound impact on network activity. Here, I investigate how coordinated activity emerges from neuronal interactions by investigating how disinhibition controls hippocampal circuits. In Aim 1, I will dissect a disinhibitory circuits controlling parvalbumin-expressing (PV) INs, a class of neurons controlling the firing of pyramidal cells. My preliminary results show that an overlooked class of INs known as backprojecting (BP) INs hierarchically control PV-INs. I devised an intersectional genetic strategy to specifically access BP-INs and establish their role in the network. Under Aim 2, I will explore how disinhibition maintains temporal neuronal sequences, a hallmark feature of coordinated neuronal activity during network oscillations. I will focus on when and how BP-INs are recruited during network oscillations and on the downstream effects of their activity by working in vitro. Under Aim 3, I will reconstruct the impact of disinhibitory neurons on hippocampal network dynamics. I will determine the necessity and the sufficiency of BP-INs in controlling hippocampal network oscillations at different phases. Overall, this research will shed light on the physiological functions of disinhibition, a well-conserved, but generally understudied circuit feature. During the K99 phase of the award, I will benefit from the mentorship of Drs. Tsien and Buzsáki at New York University Grossman School of Medicine to obtain additional training in system neuroscience. The training plan proposed will equip me with the necessary research and professional skills to start an independent career at the intersection between cellular and system neuroscience in the R00 phase. This work is further motivated by observations that dysregulation in neuronal coordination can lead to neurological disorders such as autism spectrum disorders and epilepsies. In the long term, studying how inhibitory neurons and disinhibition control neuronal network activity will provide a better understanding of these pathological conditions.
项目总结/摘要 神经元活动必须精确协调,以提供对我们环境的准确表示, 在空间导航和记忆过程中测量大脑中的电模式所例示的特征 检索虽然单个神经元的活动会根据物理位置或速度等特定特征进行调整, 在网络水平上的同步观测揭示了反映协调活动的电振荡 of thousands数千of neurons神经元.因此,神经科学的一个中心目标是了解网络活动如何 是由单个神经元之间的相互作用产生的。神经元结构相对保守 跨多个大脑区域:一群高度异质性的抑制性中间神经元(IN), 连接控制着大量的兴奋性神经元。因此,控制IN本身的机制 将对网络活动产生巨大影响。以前的研究支持存在小的 选择性地与其他神经元形成突触的神经元群。这些相对稀疏的神经元发挥去抑制作用 这些网络可能对网络活动产生深远影响。在这里,我调查了协调的活动 通过研究去抑制如何控制海马回路,从神经元的相互作用中产生。在目标1中, 将解剖一个去抑制电路控制小清蛋白表达(PV)的神经元,一类神经元控制的神经元, 锥体细胞的放电我的初步结果表明,一类被忽视的IN(称为反向投影) (BP)IN分级控制PV-IN。我设计了一种交叉遗传策略来专门访问BP-IN 并在网络中建立自己的角色。在目标2下,我将探讨去抑制如何维持颞叶神经元 序列,在网络振荡期间协调神经元活动的标志性特征。我会集中在什么时候 以及BP-IN如何在网络振荡期间被招募,以及它们活动的下游效应, 在试管中工作在目标3下,我将重建去抑制神经元对海马网络的影响 动力学本研究将确定BP-INs控制海马网络的必要性和充分性 不同阶段的振荡。总的来说,这项研究将揭示去抑制的生理功能, 这是一种保存完好但研究不足的电路特征。在K99阶段,我将受益于 来自纽约大学格罗斯曼医学院的钱博士和布扎基博士的指导, 系统神经科学的额外培训。建议的培训计划将使我具备必要的研究能力 和专业技能,在蜂窝和系统之间的交叉点开始独立的职业生涯 R 00阶段的神经科学。这项工作的进一步动机是观察到神经元的调节障碍, 协调可能导致神经系统疾病,如自闭症谱系障碍和癫痫。从长远 长期以来,研究抑制性神经元和去抑制性神经元如何控制神经元网络活动将提供更好的 了解这些病理状况。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Simon Chamberland其他文献

Simon Chamberland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Simon Chamberland', 18)}}的其他基金

Synaptic and cellular mechanisms of neuronal synchronization
神经元同步的突触和细胞机制
  • 批准号:
    10415155
  • 财政年份:
    2021
  • 资助金额:
    $ 12.26万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.26万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 12.26万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.26万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.26万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.26万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.26万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 12.26万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 12.26万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 12.26万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 12.26万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了