Controlling biomicrofluidic device surface chemistry using smart surface-segregating zwitterionic polymers
使用智能表面隔离两性离子聚合物控制生物微流体装置表面化学
基本信息
- 批准号:10193245
- 负责人:
- 金额:$ 25.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdoptionAdsorptionAirAntibodiesAntigensAvidinBindingBinding SitesBiologicalBiomanufacturingBiomedical ResearchBiotinCase StudyCell AdhesionCell Culture TechniquesCellsChemistryComplexDevicesDrug IndustryGasesGlassGoalsHealthcareHydrophobicityIndustryKnowledgeManufacturer NameMeasuresMediatingMethodsMicrofluidic MicrochipsMicrofluidicsModificationOpticsPatientsPerformancePermeabilityPharmaceutical PreparationsPolymersPropertyProteinsProtocols documentationResearchResearch PersonnelResistanceSamplingSiliconStructureSurfaceTechnologyTissuesTranslatingWaterWorkaqueousbasebiomaterial compatibilitycell typecopolymercostdesigndrug use screeningexperimental studyflexibilityfunctional grouphydrophilicityimprovedmacromoleculemechanical propertiesmembermonomernanoscalenew technologynovelorgan on a chipphysical propertypolydimethylsiloxanepreventsegregationsmall moleculesolutestability testingtissue cultureuser-friendly
项目摘要
Abstract
The use of microfluidic devices in biomedical research through tissue culture experiments
(tissues/organs-on-chips) and biological separations is growing rapidly. Polydimethylsiloxane (PDMS)
has been the most popular material for microfluidics due to its feature replication down to the nanoscale,
flexibility, gas permeability for oxygenation, and low cost. Yet, the hydrophobicity of PDMS leads to the
adsorption of macromolecules (e.g. proteins) and hydrophobic compounds (e.g. Class II & IV drugs) on
device surfaces. This curtails its use for drug screening in “organs-on-chips”, and other applications.
Current technologies to improve PDMS surface hydrophilicity involve added processing steps and/or do
not create surfaces that remain hydrophilic for long periods. They also cannot simultaneously incorporate
functional groups to promote binding of specific biomolecules and create bioactive surfaces. This
hampers their large-scale implementation and adoption. Our long-term goal is to develop smart materials
to improve the precision, robustness, and functionality of biomicrofluidics while keeping their large-scale
fabrication simple, facile, and efficient. In this application, we detail a novel, simple technology to modify
PDMS via rationally designed smart polymers that, when blended with PDMS during device manufacture,
spontaneously segregate to surfaces and create a <1 nm layer when in contact with aqueous solutions
that prevents non-specific adsorption of organic and biomolecules, yet can be functionalized to control
specific binding for a given application. Our methods are fully compatible with existing PDMS device
manufacture protocols without any additional processing steps. To achieve this immediate goal, we aim
to develop novel CP additives for “Smart Copolymer Addition for Modification of PDMS Surfaces”
(SCAMPS), specifically highly branched CPs of PDMS with zwitterionic (ZI) groups (Aim 1), with the
addition of functional groups that mediate specific binding (Aim 2). We will design and synthesize several
members of each smart copolymer class, prepare samples from their blends with PDMS, and
characterize them in terms of their mechanical properties, optical clarity, surface chemistry, and tendency
to adsorb proteins and small molecule drugs. For functionalized samples, we will also measure the
selective adhesion of desired solutes (e.g. avidin on biotin-functional surfaces) and cell types. We will
also test the stability and chemistry of the surface upon long-term storage in air and water. We will prepare
microfluidic devices from most promising candidates and validate their performance in long-term cell
culture experiments. We expect the technologies we develop to improve the accessibility of microfluidics
to end users (patients, researchers, drug industry) by providing a low-cost and user-friendly approach to
the fabrication of reliable biomicrofluidics.
摘要
微流控装置在生物医学组织培养实验研究中的应用
(组织/芯片上器官)和生物分离正在迅速发展。聚二甲基硅氧烷(PDMS)
由于其特征复制到纳米级,
柔韧性好,透气性好,便于充氧,成本低。然而,PDMS的疏水性导致
吸附大分子(如蛋白质)和疏水化合物(如II和IV类药物)
设备表面。这限制了它在“器官芯片”和其他应用中的药物筛选。
改善PDMS表面亲水性的现有技术涉及增加的加工步骤和/或不
不会产生长时间保持亲水性的表面。它们也不能同时
官能团,以促进特定生物分子的结合并产生生物活性表面。这
阻碍了它们的大规模实施和采用。我们的长期目标是开发智能材料
提高生物微流体的精度、鲁棒性和功能性,同时保持其大规模
制造简单、容易且有效。在本应用程序中,我们详细介绍了一种新颖、简单的修改技术
PDMS通过合理设计的智能聚合物,当在设备制造过程中与PDMS混合时,
当与水溶液接触时,自发地分离到表面并产生<1 nm的层
其防止有机和生物分子的非特异性吸附,还可以被功能化以控制
针对特定应用的特定绑定。我们的方法与现有的PDMS设备完全兼容
制造协议,而无需任何额外的处理步骤。为了实现这一目标,我们的目标是
开发新型CP添加剂,用于“智能共聚物添加剂用于PDMS表面改性”
(SCAMPS),特别是具有两性离子(ZI)基团的PDMS的高度支化CP(Aim 1),
添加介导特异性结合的官能团(目的2)。我们将设计并合成几个
每个智能共聚物类的成员,从它们与PDMS的共混物制备样品,以及
根据其机械性能、光学透明度、表面化学和趋势对其进行表征
吸附蛋白质和小分子药物。对于功能化样品,我们还将测量
所需溶质(例如生物素功能表面上的抗生物素蛋白)和细胞类型的选择性粘附。我们将
还可以测试在空气和水中长期储存后表面的稳定性和化学性质。我们将准备
微流控器件从最有前途的候选人,并验证其性能在长期的细胞
培养实验我们希望我们开发的技术能够提高微流体的可及性
通过提供低成本和用户友好的方法,
可靠的生物微流体的制造
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ayse Asatekin其他文献
Ayse Asatekin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ayse Asatekin', 18)}}的其他基金
On Demand Dissoluble Supramolecular Hydrogels: Towards Pain Free Burn Dressings
按需可溶性超分子水凝胶:迈向无痛烧伤敷料
- 批准号:
10658220 - 财政年份:2023
- 资助金额:
$ 25.08万 - 项目类别:
Controlling biomicrofluidic device surface chemistry using smart surface-segregating zwitterionic polymers
使用智能表面隔离两性离子聚合物控制生物微流体装置表面化学
- 批准号:
10446995 - 财政年份:2021
- 资助金额:
$ 25.08万 - 项目类别:
相似国自然基金
CircATP8A1通过吸附miR-217与miR-1825解除对IGF1和FGF2的抑制作用促进三阴性乳腺癌生长与转移
- 批准号:2025JJ81063
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
通过界面吸附链环提升高分子纳米复合材料
加工流动性及其机制
- 批准号:Q24E030035
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
circMELK 通过吸附 miR-580 靶向调控 ATR-CHEK1 轴在膀胱癌侵袭转移中的作用及机制研究
- 批准号:2024JJ7419
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
钛表面介孔硅结构通过调控凝血因子XII吸附取向影响纤维蛋白网络的机制探索
- 批准号:82301155
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
circARHGAP10通过吸附miR-335-3p和结合IGF2BP3促进CAVD及血小板膜给药系统靶向干预研究
- 批准号:82300412
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
灿烂弧菌群体感应LuxO通过脂多糖O抗原调控噬菌体吸附的分子机制
- 批准号:LQ23C190005
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
circ0005912通过海绵吸附miR-765/miR-934调控SP1/Wnt/beta-catenin 信号通路影响肝母细胞瘤增殖及干性的作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于“”玄府理论“”探讨补肾祛毒汤通过调控LncRNA GAS5吸附miR-96-5P影响肾间质纤维化的机制
- 批准号:2022J01827
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
c ircRNA_103870 通过海绵吸附miR-494 参与胃肠道间质瘤发生的作用和机制
- 批准号:2022JJ30866
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
右美托咪定通过lncRNA-BCAR4吸附miR-665调控CB2减轻心肌缺血/再灌注损伤的机制研究
- 批准号:82060060
- 批准年份:2020
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 25.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 25.08万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 25.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 25.08万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 25.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 25.08万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 25.08万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 25.08万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 25.08万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 25.08万 - 项目类别:
Standard Grant