Development of neurologic itch signature
神经性瘙痒特征的发展
基本信息
- 批准号:10193704
- 负责人:
- 金额:$ 17.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAntipruriticsAttentionBiologicalBiological MarkersBiological ProcessBrainBrain PathologyBrain imagingBrain regionCharacteristicsChildClinical TrialsComplexData SetDermatologicDevelopmentDiagnosisDiseaseDoseElderlyElementsFunctional Magnetic Resonance ImagingFunctional disorderFutureGoalsHospitalsHumanImpaired cognitionIndustryInfantInterventionMachine LearningMagnetic Resonance ImagingMeasuresMedicineModernizationMorbidity - disease rateNeurologicPainPatient Self-ReportPatientsPatternPerformancePhysiciansProcessProtocols documentationPruritusPsyche structureReportingReproducibilityResearchResearch InstituteResearch ProposalsRestSensitivity and SpecificitySeveritiesSeverity of illnessSignal TransductionSpecificityStandardizationStimulusTestingTherapeuticTrainingUnited States National Institutes of HealthWorkbasebiomarker developmentchronic itchcostdiagnosis qualityexpectationglobal healthimprovedindividual patientmachine learning algorithmneurotransmissionnoninvasive brain stimulationnovelphrasesprimary endpointprogramspsychologicsuccesstargeted treatmenttreatment effecttreatment trial
项目摘要
Abstract: Chronic itch is a global health problem affecting tens of millions of people worldwide. However, there
is no objective biomarker to assess itch. Since itch results from activity in brain circuits through the participation
of many brain regions, we suggest developing specific brain biomarkers to assess the disease states and
treatment effects using functional brain imaging and machine learning. Developments of biomarkers are one of
the great advances of modern allopathic medicine. In itch treatment, assessment of itch is an important
indicator in understanding the progress of chronic itch and treatment effect. Currently, itch assessment is
based almost exclusively on patients' self-reports, which is inherently limited by the complex relationship
between biological pruriceptive (itch-related) processes and patients' verbal or written descriptions of itch. In
particular, self-report is not applicable for people who have a limited capacity to report itch such as infants, very
young children, and elderly people with cognitive impairments. Addressing chronic itch is becoming a central
morbidity in many dermatological diseases and a primary endpoint in clinical trials. Therefore, there is a great
need to develop a reliable biomarker for itch. Itch-related neural signals are a fundamental element of the itch
sensation. Measuring these signals can be a reliable biomarker for itch. Recent advancement of brain imaging
combined with machine learning algorithms has enabled development of brain activity-based biomarkers to
assess various mental activities and brain functions. This advancement, together with ongoing progress of low-
cost & high-performance MRI, will expand the feasibility of practical use of fMRI in medicine. A brain activity-
based biomarker for itch (i.e., Neurologic Itch Signature, NIS) may dramatically improve the quality of
diagnoses, treatments and clinical trials. Moreover, the NIS can be a promising biomarker for itch-related
processing in the brain, which enables to better understand the pathophysiology of chronic itch. The aim of our
research proposal is to develop the NIS. In particular, we will demonstrate (1) that the NIS will selectively
respond to itch (i.e., unresponsive to pain) and (2) that the NIS can predict not only an existence of itch but
also itch intensity, as these are fundamental requirements of biomarker for itch. To achieve this goal, we will
obtain datasets of brain activity during various intensities of itch and pain stimuli and resting condition by using
functional MRI (fMRI), and identify a characteristic brain activity pattern for itch (i.e., the NIS) by analyzing the
datasets using a machine learning algorithm. We will test whether the created NIS can predict itch and severity
of itch without prior information. The NIS will accelerate itch research and improve quality of diagnosis and
treatment of itch, which will eventually help the many people who suffer from chronic itch.
摘要:慢性瘙痒是一个全球性的健康问题,影响着全球数千万人。然而,在那里
没有客观的生物标记物来评估瘙痒。由于瘙痒是通过参与大脑回路的活动而产生的
在许多大脑区域中,我们建议开发特定的大脑生物标记物来评估疾病状态和
使用脑功能成像和机器学习的治疗效果。生物标志物的发展是
现代对抗疗法的巨大进步。在瘙痒治疗中,对瘙痒的评估是一个重要的
了解慢性瘙痒的进展和治疗效果的指标。目前,瘙痒评估是
几乎完全基于患者的自我报告,这固有地受到复杂关系的限制
在生物瘙痒(瘙痒相关)过程和患者对瘙痒的口头或书面描述之间。在……里面
特别是,自我报告不适用于报告瘙痒能力有限的人,如婴儿,非常
幼儿,以及有认知障碍的老年人。解决慢性瘙痒正在成为一个核心问题
许多皮肤病的发病率和临床试验的主要终点。因此,有一个很大的
需要开发一种可靠的瘙痒生物标志物。瘙痒相关的神经信号是瘙痒的基本要素
轰动一时。测量这些信号可以作为瘙痒的可靠生物标志物。脑成像的最新进展
与机器学习算法相结合,使基于大脑活动的生物标志物的开发成为可能
评估各种精神活动和大脑功能。这一进展,以及正在进行的Low-
性价比高的磁共振成像,将扩大功能磁共振成像在医学上实际应用的可行性。一种大脑活动-
基于瘙痒的生物标志物(即神经瘙痒信号,NIS)可以显著提高患者的治疗质量
诊断、治疗和临床试验。此外,NIS可以作为瘙痒相关的生物标志物
在大脑中进行处理,这使我们能够更好地了解慢性瘙痒的病理生理学。我们的目标是
研究建议是开发国家信息系统。特别是,我们将演示(1)NIS将有选择地
对瘙痒的反应(即,对疼痛不敏感)和(2)NIS不仅可以预测是否存在瘙痒,而且
还有瘙痒强度,因为这些是瘙痒生物标记物的基本要求。为了实现这一目标,我们将
获取在不同强度的瘙痒和疼痛刺激以及休息条件下的大脑活动数据集
功能磁共振成像(FMRI),并通过分析瘙痒的特征脑活动模式(即NIS)
使用机器学习算法的数据集。我们将测试创建的NIS是否可以预测瘙痒和严重程度
在没有事先信息的情况下发痒。NIS将加快瘙痒研究,提高诊断和治疗质量
治疗瘙痒,这最终将帮助许多患有慢性瘙痒的人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hideki Mochizuki其他文献
Hideki Mochizuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hideki Mochizuki', 18)}}的其他基金
Itch-specific brain circuit and dopaminergic gene polymorphisms influencing individual differences in itch perception
瘙痒特异性脑回路和多巴胺能基因多态性影响瘙痒感知的个体差异
- 批准号:
10735592 - 财政年份:2023
- 资助金额:
$ 17.47万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 17.47万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 17.47万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 17.47万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 17.47万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 17.47万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 17.47万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 17.47万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 17.47万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 17.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 17.47万 - 项目类别:
Studentship