Development and clinical validation of multimodal risk algorithms for predicting future internalizing psychopathology

用于预测未来内化精神病理学的多模式风险算法的开发和临床验证

基本信息

项目摘要

I am currently Assistant Professor and a licensed clinical psychologist in the Department of Psychiatry at the University of Vermont. My long-term career goal is to become an independent investigator using novel strategies in developmental neuroimaging to study mood and anxiety symptomatology from birth to maturity. Although I have been trained in the analysis of longitudinal structural MRI, I require further training in the processing and analysis of state-of-the-art multiband neuroimaging data that allows for more sensitive measures of brain connectivity. I am also lacking expertise with regard to more sophisticated analytic methods for more fully leveraging large-sample multimodal datasets. Such approaches will enable me to move beyond conventional univariate statistical analyses and prepare me for future Big Data initiatives. During the proposed K08 period, my overarching goal is to develop expertise in the application of machine-learning approaches to multimodal data in order to characterize the most salient psychosocial and brain-based predictors of youth internalizing psychopathology. To achieve these goals, I am pursuing career development and training activities in the following areas: 1) assessment and characterization of psychosocial risk factors; 2) theory and implementation of Big Data methods, including machine learning algorithms and cross-validation strategies; 3) analysis of multiband multimodal brain imaging data using Human Connectome Project pipelines with the aim of more comprehensively assessing aspects of cortico-limbic connectivity; 4) independently running my own neuroimaging research study; and 5) developing and submitting a competitive R01 application. In order to obtain this expertise, I am proposing training activities at several institutions, including the University of Vermont, Harvard Medical School, McGill University, and Oregon Health and Science University. The research project in this K08 proposal aims to produce risk algorithms for a transdiagnostic dimension of psychopathology, using novel machine learning approaches to leverage two of the largest longitudinal neuroimaging samples in the world (IMAGEN and the Adolescent Brain Cognitive Development study). These risk algorithms will subsequently undergo refinement using a new sample of clinic-referred youths that I will recruit from an outpatient psychiatric clinic in Vermont. As part of the project, I will also test the degree to which these algorithms predict treatment response. These data will be used as pilot data for my planned R01 application. Given the methods that I am proposing, this project will be able to detect complex non-linear interactions involving risk factors from a multitude of domains. As a result, this work will inform, and help to delineate, various etiological pathways that ultimately result in internalizing problems. Most importantly, this project could inform early identification and targeted intervention strategies during a critical period for the development of internalizing symptomatology. !
我目前是助理教授和持牌临床心理学家在精神病学系在 佛蒙特大学。我的长期职业目标是成为一名独立的调查员, 发展神经影像学的策略,研究从出生到成熟的情绪和焦虑心理学。 虽然我接受过纵向结构MRI分析的培训,但我需要进一步培训, 处理和分析最先进的多波段神经成像数据, 大脑连通性的测量。我也缺乏更复杂的分析方法方面的专业知识 更充分地利用大样本多模态数据集。这些方法将使我能够超越 传统的单变量统计分析,并为未来的大数据计划做好准备。在拟议 K 08期间,我的首要目标是发展机器学习方法应用方面的专业知识, 多模态数据,以表征最突出的心理社会和基于大脑的预测青年 内化精神病理学为了实现这些目标,我正在追求职业发展和培训 在以下领域开展活动:1)评估和描述心理社会风险因素; 2)理论和 大数据方法的实施,包括机器学习算法和交叉验证策略; 3) 使用人类连接组项目管道分析多波段多模态脑成像数据, 更全面地评估皮质边缘连接方面; 4)独立运行我自己的 神经影像学研究; 5)开发并提交竞争性R 01申请。为了 为了获得这一专门知识,我建议在几个机构开展培训活动,其中包括维也纳大学。 佛蒙特州、哈佛医学院、麦吉尔大学和俄勒冈州健康与科学大学。研究 K 08提案中的项目旨在为以下跨诊断维度生成风险算法: 精神病理学,使用新的机器学习方法来利用两个最大的纵向 神经影像学样本(IMAGEN和青少年大脑认知发展研究)。这些 风险算法随后将使用一个新的诊所推荐的年轻人样本进行改进,我将 从佛蒙特州的一家精神病门诊招募的作为项目的一部分,我还将测试 这些算法预测治疗反应。这些数据将用作我计划的R 01的试验数据 应用程序.鉴于我提出的方法,这个项目将能够检测复杂的非线性 涉及来自多个领域的风险因素的相互作用。因此,这项工作将提供信息,并有助于 描述了最终导致内化问题的各种病因学途径。最重要的是这 该项目可以在关键时期为早期识别和有针对性的干预战略提供信息, 发展国际化医学。 !

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew D Albaugh其他文献

976. Estradiol, Cortico-Amygdalar Structural Networks and Cognitive Development
  • DOI:
    10.1016/j.biopsych.2017.02.702
  • 发表时间:
    2017-05-15
  • 期刊:
  • 影响因子:
  • 作者:
    Patricia Gower;Tuong-Vi Nguyen;Matthew D Albaugh;Kelly N Botteron;James J Hudziak;Vladimir S Fonov;Louis Collins;Simon Ducharme;James T McCracken
  • 通讯作者:
    James T McCracken

Matthew D Albaugh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew D Albaugh', 18)}}的其他基金

Development and clinical validation of multimodal risk algorithms for predicting future internalizing psychopathology
用于预测未来内化精神病理学的多模式风险算法的开发和临床验证
  • 批准号:
    10412023
  • 财政年份:
    2020
  • 资助金额:
    $ 18.44万
  • 项目类别:
Development and clinical validation of multimodal risk algorithms for predicting future internalizing psychopathology
用于预测未来内化精神病理学的多模式风险算法的开发和临床验证
  • 批准号:
    10646253
  • 财政年份:
    2020
  • 资助金额:
    $ 18.44万
  • 项目类别:
Development and clinical validation of multimodal risk algorithms for predicting future internalizing psychopathology
用于预测未来内化精神病理学的多模式风险算法的开发和临床验证
  • 批准号:
    10054828
  • 财政年份:
    2020
  • 资助金额:
    $ 18.44万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 18.44万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 18.44万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.44万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了