Computational Methods for Identifying Non-coding Cancer Drivers
识别非编码癌症驱动因素的计算方法
基本信息
- 批准号:10192676
- 负责人:
- 金额:$ 47.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAttentionBenchmarkingBiological AssayCRISPR screenCRISPR/Cas technologyCancer PatientCatalogsCell Culture TechniquesCell LineCell SurvivalCell divisionCellsClinicClustered Regularly Interspaced Short Palindromic RepeatsCodeColonColon CarcinomaColorectal CancerComputer ModelsComputing MethodologiesDNA SequenceDataDevelopmentDiseaseDissectionElementsEnhancersEvaluationFrequenciesGene ExpressionGenesGeneticGenomeHeterogeneityInstitutesKnock-inLearningMalignant NeoplasmsMalignant neoplasm of prostateMeasuresMethodsModificationMutagenesisMutateMutationNatureOpen Reading FramesPatientsPhenotypePlayProstateProteinsRecurrenceRegulatory ElementReporterResearchRoleRunningSamplingScreening ResultSignal TransductionSomatic MutationStatistical AlgorithmStructureTargeted ResequencingTestingTrainingTranscriptUntranslated RNAValidationVariantbiobankcancer genomecancer typecell growthcohortcolon cancer cell linedriver mutationgenome editinggenome sequencinggenome-widehigh throughput screeninginnovationknock-downmelanomanovelpatient derived xenograft modelprecision medicinepromotertooltranscription factortumortumor growthtumor heterogeneitytumor microenvironmenttumorigenesistumorigenicwhole genome
项目摘要
Most variants obtained from tumor whole-genome sequences (WGS) occur in non-
coding regions of the genome. Although variants in protein-coding regions have received
the majority of attention, numerous studies have now noted the importance of non-
coding variants in cancer. Identification of functional non-coding variants that drive tumor
growth remains a challenge and a bottleneck for the use of whole-genome sequencing in
the clinic. Cancer drivers are generally identified by the high frequency at which their
mutations occur across patients. However, mutation rate is highly heterogeneous in non-
coding regions and many non-driver elements show higher mutation frequency than
others, such as regions bound by transcription factors in melanoma or regions
replicating late during cell division in colon cancer. In this proposal, we will use high-
throughput pooled CRISPR screen and novel computational methods to predict non-
coding cancer drivers. We will quantitatively measure the impact of thousands of non-
coding mutations using our innovative high-throughput CRISPR screen that directly ties
modifications in the native context of the non-coding genome (i.e. not a reporter assay)
to a cancer relevant phenotype (cell growth). The results of the screen will be used as
training data for the development of NC_Driver, a computational cancer driver prediction
tool. NC_Driver will integrate the signals of high functional impact with the recurrence of
variants across multiple tumor samples to identify the non-coding mutations under
positive selection in cancer. We will identify drivers in promoters, enhancers and CTCF
insulators. CTCF insulators are the most mutated yet least studied regulatory elements
in the cancer genome. Using this integrative experimental and computational approach,
we will identify high-confidence candidate drivers. Finally, we will perform functional
evaluation of prioritized non-coding drivers in colorectal and prostate cancers. We will
use CRISPR/Cas9 genome editing in patient-derived cell cultures to test 20 high-ranking
candidate driver promoter/enhancer/insulator mutations. Overall, this proposal
addresses the critical need to identify drivers in the non-coding genome and over long-
term enable the maximal benefit of genome sequencing for each patient.
从肿瘤全基因组序列(WGS)中获得的大多数变异发生在非
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EKTA KHURANA其他文献
EKTA KHURANA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EKTA KHURANA', 18)}}的其他基金
Tri-Institutional PhD Program in Computational Biology and Medicine
计算生物学和医学三机构博士项目
- 批准号:
10662380 - 财政年份:2020
- 资助金额:
$ 47.39万 - 项目类别:
Tri-Institutional PhD Program in Computational Biology and Medicine
计算生物学和医学三机构博士项目
- 批准号:
10198949 - 财政年份:2020
- 资助金额:
$ 47.39万 - 项目类别:
Tri-Institutional PhD Program in Computational Biology and Medicine
计算生物学和医学三机构博士项目
- 批准号:
10434024 - 财政年份:2020
- 资助金额:
$ 47.39万 - 项目类别:
Computational Methods for Identifying Non-coding Cancer Drivers
识别非编码癌症驱动因素的计算方法
- 批准号:
10411390 - 财政年份:2018
- 资助金额:
$ 47.39万 - 项目类别:
Computational Methods for Identifying Non-coding Cancer Drivers
识别非编码癌症驱动因素的计算方法
- 批准号:
10440412 - 财政年份:2018
- 资助金额:
$ 47.39万 - 项目类别:
Computational Methods for Identifying Non-coding Cancer Drivers
识别非编码癌症驱动因素的计算方法
- 批准号:
10437162 - 财政年份:2018
- 资助金额:
$ 47.39万 - 项目类别:
Computational Methods for Identifying Non-coding Cancer Drivers
识别非编码癌症驱动因素的计算方法
- 批准号:
10524091 - 财政年份:2018
- 资助金额:
$ 47.39万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 47.39万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 47.39万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 47.39万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 47.39万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 47.39万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 47.39万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 47.39万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 47.39万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 47.39万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 47.39万 - 项目类别:
Research Grant














{{item.name}}会员




